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Abstract

Radiance fields have achieved incredible visual results,
but the implicit nature causes both rendering and learn-
ing time to be impractical for many purposes. Our work
suggests a compromise between discrete representations
which are convenient to render, and implicit representa-
tions, which generally enjoy better training results: instead
of an implicit function which takes in 5D input based on
position and angle, we use differentiable rendering on a tri-
angle soup. This allows us to use classical rendering tech-
niques which are fast and highly parallelizable while main-
taining a promising degree of accuracy. Each triangle of
the triangle soup has a learnt opacity and color attribute,
hence we name it the stained glass model. Furthermore,
propose a method of iteratively resampling the vertices of
the triangle soup to improve the accuracy of the model.

1. Introduction
Novel view synthesis is an old task in computer vision,

but it has never been so exciting. With the emergence of
neural radiance fields [3], the possibilities seem endless.
Neural radiance fields (NeRF) are implicit representations
of a 3D object learnt as a neural network. Particularly, the
neural network inputs (x, y, z, ϕ, θ) denoting the position
and viewing angle of a point, and outputs (c, σ) denoting the
color and opacity at that point. This implicit function is ren-
dered into an image by raycasting and taking samples along
each ray to integrate using the transmittance formula [2].
However, the original NeRF suffered from the same issue as
other 3D neural implicit representations: the rendering pro-
cess is too slow for real-time rendering. A high resolution
image requires casting on the order of 106 rays, and each
ray is sampled some number of times. Then each sample
must be forward-propagated through the neural network.
With the help of vectorization, all these computations can
be done in several seconds, but this is not good enough to
please the human eye, which prefers at least 60FPS. This
slow rendering also results in very long training time, since
rendering is a piece of the training loop. Due to this prob-

Figure 1. A teaser for the results. Our method does not come close
to the state-of-the-art, but the results are somewhat promising.

lem, a number of works have sought out to reduce the com-
putation time [1, 4–7], primarily by reducing or factoring
the neural elements of NeRF. Our work continues this trend
by learning a 5D representation that doesn’t involve neu-
ral networks. The most similar work is [8], which we dis-
cuss further in the next section. Like it, we prefer a discrete
structure rather than a fully implicit structure. However, we
choose to use a triangle soup rather than a sparse voxel grid.
Here, we summarize our work’s results:

• We introduce our novel stained glass model, which
combines benefits of discrete structures and implicit
training methods;

• We use classical rendering techniques to form a differ-
entiable rendering pipeline;

• We give an efficient method of training for the task of
novel view synthesis.
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2. Related Work

Though our work does not involve any neural structures,
it would be remiss not to begin by discussing neural radi-
ance fields (NeRF) [3]. NeRF represents 3D objects as an
implicit function which takes in the position and viewing
direction, and outputs the density at that point and the color
at that point and with that viewing direction. In order to
train the network, known views were rendered from known
poses. To render each image, a large number of rays were
cast and samples were taken along each ray to query into
the network. Thus, though this work gave excellent results
in novel view synthesis, but as mentioned, it came with slow
rendering time. To avoid this slow runtime, our work fol-
lows [8], which removes the neural network completely, re-
placing it with a voxel grid of functions in the spherical har-
monic basis. The rest of their approach remained largely the
same as NeRFs, with rendering being casting rays and tak-
ing samples, but removing the neural network allowed them
to achieve orders of magnitude better runtime. Their con-
clusion was that the radiance field was the primary benefit
of NeRF and that the neural representation was secondary.
Our paper aims to modify the learning process to improve
runtime.

3. Method

Notation. The dataset for radiance field training con-
tains known camera poses and relevant parameters as the
input. Particularly, we have K 4 × 4 transformation matri-
ces P1, P2, . . . , Pm representing our camera poses as well
as the image dimensions H,W and focal length f . The
outputs are the H × W images I1, I2, . . . , Im seen by the
camera at each respective pose. We can instead express our
inputs and outputs as the K×H×W triplets (o, r, C) where
o + tr is a ray from the camera and C is the color of the
resulting pixel as RGBA. Our structure, which we denote
as F , attempts to solve the problem F (o, r) = C. Note
that novel view synthesis is a straightforward application of
such a model.

Stained glass model. Our model is parameterized
by a triangle soup with m triangles over n points with
color and opacity attributes. Let us denote our points as
p1, p2, . . . , pn ∈ R3. Then the m triangles take their
vertices as triplets of these points which are denoted as
(a1, b1, c1), . . . , (am, bm, cm) ∈ [n]3. Each point pi has
some color si and opacity σi and the triangles interpolate
these attributes following barycentric weighting. When ren-
dered with random initializations, the model appears like
pieces of stained glass strewn across space (Fig. 2). The
color attributes si are implicitly dependent on the view di-
rection as they are parameterized with spherical harmonics
coefficients.

To initialize the model, the points are chosen uniformly

Figure 2. An example of the model’s random initialization. Un-
like standard rasterization, multiple triangles influence the color of
each pixel.

at random from a bounding box which the object is given
to be in. The initial color, parameterized by spherical coef-
ficients, is random while the initial opacity is chosen to be
a low value of 0.01. The triangles are chosen by comput-
ing the k-nearest neighbours of the vertices for k = 10 and
forming triangles randomly within these. This helps ensure
that there are no gaps, but it does mean that are no guar-
antees on the connectivity or topology of the triangle soup
and these are poor in practice. However, for the purpose of
rendering, these are not necessary.

Rendering pipeline. To render a ray (o, r), we first use
the MT algorithm to compute all m ray-triangle intersec-
tions o+tir as well as the barycentric coordinates ui, vi, wi.
We discard any triangles that are not actually intersected by
the ray, then sort the remaining ones by ti. For the ith trian-
gle that remains and assuming that it is sorted, we compute
its opacity σ∗

j and color s∗i at the point of intersection:

s∗i = uisa + visb + wisc,

σ∗
i = uiσa + viσb + wiσc.

Then using the single-scattering radiance formula, we com-
pute

Ti = exp

(
−

i−1∑
i=1

σ∗
i

)
,

F (o, r).rgb =

m∑
i=1

Ti(1− e−σ∗
i )s∗i ,

F (o, r).a = 1− Tm.
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Again, the view direction, represented as spherical coordi-
nates (θ, ϕ) is implicit in the above equations. The spherical
harmonic coefficients are linear so we only need to evalu-
ate the spherical harmonics with these angles after summing
the coefficients over the triangles.

Training. To train, we use gradient descent to optimize
over the opacity and color of each point. We choose to use
gradient descent as the output is non-linear in terms of σ
(though it is an overconstrained linear system in terms of the
color attributes s). Also, backpropagation is relatively fast
for this setup. Though the rendering pipeline is involved,
backpropagating is shallow as the opacity and color are only
present in the final step of the rendering pipeline. In partic-
ular, the t, u, v, w values computed during rendering are not
dependent on these learnt parameters.

During the training routine, we batch pixels from our im-
ages I to cast rays from and render. Then our loss is the
mean squared error between the rendered RGBA values and
the ground truth RGBA values.

After each epoch during training, the points are resam-
pled so that the new points are biased to be sampled close
to the old points with high opacity. This helps learn sur-
face details better. In particular, we choose 0.5n points with
replacement from the old points and perturb them slightly
with Gaussian noise. Then we append 0.5n completely
new points sampled uniformly at random from the original
bounding box.

4. Experiments
Setup. The experiments are solely performed on the toy

Lego model dataset [3]. This is a synthetic model with 400
training, validation, and test views, each giving an 800×800
image with RGBA values between 0 and 1. The exper-
iments were run on a NVIDIA Geforce RTX 3050 GPU.
Due to memory limitations, we downsampled all images to
100 × 100, and used a batch size of 200. In other words,
there were 100 × 100 × 100 pixels in the training set and
each batch rendered from 200, giving 5000 iterations per
epoch. We use an Adam optimizer with a learning rate of
10−3.

For our stained glass model, we choose n = 5000 points
and generate m = 50000 triangles from these vertices as
described above. The spherical harmonic coefficients are
up to order two. The Lego dataset has relatively simple
lighting conditions so it is unlikely that this choice of hy-
perparameters would have a large effect.

Results. Our results generally had poor visual quality.
This is in part due to technical limitations as we had to
downsample the images to 100× 100. It is also unfortunate
that we could only use n = 5000 points due to memory lim-
its. For comparison, [7] used 2563 ≈ 1.7 × 107 voxels. It
is likely that this directly limited the model’s ability to rep-
resent the 3D scene. Even with these reduced parameters,

Figure 3. Training loss for training loop without resampling. As
can be seen, it plateaus quickly, but fails to reach a good MSE.

Figure 4. Results on the validation set after 5 epochs. No resam-
pling was used for these results.

each epoch still took approximately 175 seconds. Hence, it
takes 1.75 seconds on average to render a single 100× 100
image of a view. However, in the following ablation study,
we find that some of our techniques helped improve the vi-
sual quality.

Ablation study. There are artifacts in the results without
using the resampling trick, as shown in Fig. 4, Fig. 5. We
can see that there are ghost triangles where there should be
empty space. However, with the exact same setup, but now
resampling after every epoch, we remove these artifacts and
find overall cleaner results as shown in Fig. 6, Fig. 7.

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#*****

CVPR
#*****

CVPR 2022 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 5. Results on the training set after 5 epochs. No resampling
was used for these results.

Figure 6. Results on the validation set after 5 epochs. Resampling
was used for these results, and fewer artifacts can be seen.

5. Conclusion

Our work proposes a novel radiance field structure based
on a triangle soup. While we do not obtain state-of-the-art
results, we hope that our progress can inspire future direc-
tions to improve this work. In particular, we believe that by
building on more modern pipelines for rendering triangles,
we can accelerate our differentiable rendering pipeline to be
competitive.

Figure 7. Results on the training set after 5 epochs. Resampling
was used for these results, and fewer artifacts can be seen.
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