
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#*****

CVPR
#*****

CVPR 2022 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Radiance Fields Out of Stained Glass Pieces

Anonymous CVPR submission

Paper ID *****

Abstract

Radiance fields have achieved incredible visual results,
but the implicit nature causes both rendering and learn-
ing time to be impractical for many purposes. Our work
suggests a compromise between discrete representations
which are convenient to render, and implicit representa-
tions, which generally enjoy better training results: instead
of an implicit function which takes in 5D input based on
position and angle, we use differentiable rendering on a tri-
angle soup. This allows us to use classical rendering tech-
niques which are fast and highly parallelizable while main-
taining a promising degree of accuracy. Each triangle of
the triangle soup has a learnt opacity and color attribute,
hence we name it the stained glass model. Furthermore,
propose a method of iteratively resampling the vertices of
the triangle soup to improve the accuracy of the model.

1. Introduction
Novel view synthesis is an old task in computer vision,

but it has never been so exciting. With the emergence of
neural radiance fields [3], the possibilities seem endless.
Neural radiance fields (NeRF) are implicit representations
of a 3D object learnt as a neural network. Particularly, the
neural network inputs (x, y, z, ϕ, θ) denoting the position
and viewing angle of a point, and outputs (c, σ) denoting the
color and opacity at that point. This implicit function is ren-
dered into an image by raycasting and taking samples along
each ray to integrate using the transmittance formula [2].
However, the original NeRF suffered from the same issue as
other 3D neural implicit representations: the rendering pro-
cess is too slow for real-time rendering. A high resolution
image requires casting on the order of 106 rays, and each
ray is sampled some number of times. Then each sample
must be forward-propagated through the neural network.
With the help of vectorization, all these computations can
be done in several seconds, but this is not good enough to
please the human eye, which prefers at least 60FPS. This
slow rendering also results in very long training time, since
rendering is a piece of the training loop. Due to this prob-

Figure 1. A teaser for the results. Our method does not come close
to the state-of-the-art, but the results are somewhat promising.

lem, a number of works have sought out to reduce the com-
putation time [1, 4–7], primarily by reducing or factoring
the neural elements of NeRF. Our work continues this trend
by learning a 5D representation that doesn’t involve neu-
ral networks. The most similar work is [8], which we dis-
cuss further in the next section. Like it, we prefer a discrete
structure rather than a fully implicit structure. However, we
choose to use a triangle soup rather than a sparse voxel grid.
Here, we summarize our work’s results:

• We introduce our novel stained glass model, which
combines benefits of discrete structures and implicit
training methods;

• We use classical rendering techniques to form a differ-
entiable rendering pipeline;

• We give an efficient method of training for the task of
novel view synthesis.

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#*****

CVPR
#*****

CVPR 2022 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2. Related Work

Though our work does not involve any neural structures,
it would be remiss not to begin by discussing neural radi-
ance fields (NeRF) [3]. NeRF represents 3D objects as an
implicit function which takes in the position and viewing
direction, and outputs the density at that point and the color
at that point and with that viewing direction. In order to
train the network, known views were rendered from known
poses. To render each image, a large number of rays were
cast and samples were taken along each ray to query into
the network. Thus, though this work gave excellent results
in novel view synthesis, but as mentioned, it came with slow
rendering time. To avoid this slow runtime, our work fol-
lows [8], which removes the neural network completely, re-
placing it with a voxel grid of functions in the spherical har-
monic basis. The rest of their approach remained largely the
same as NeRFs, with rendering being casting rays and tak-
ing samples, but removing the neural network allowed them
to achieve orders of magnitude better runtime. Their con-
clusion was that the radiance field was the primary benefit
of NeRF and that the neural representation was secondary.
Our paper aims to modify the learning process to improve
runtime.

3. Method

Notation. The dataset for radiance field training con-
tains known camera poses and relevant parameters as the
input. Particularly, we have K 4 × 4 transformation matri-
ces P1, P2, . . . , Pm representing our camera poses as well
as the image dimensions H,W and focal length f . The
outputs are the H × W images I1, I2, . . . , Im seen by the
camera at each respective pose. We can instead express our
inputs and outputs as the K×H×W triplets (o, r, C) where
o + tr is a ray from the camera and C is the color of the
resulting pixel as RGBA. Our structure, which we denote
as F , attempts to solve the problem F (o, r) = C. Note
that novel view synthesis is a straightforward application of
such a model.

Stained glass model. Our model is parameterized
by a triangle soup with m triangles over n points with
color and opacity attributes. Let us denote our points as
p1, p2, . . . , pn ∈ R3. Then the m triangles take their
vertices as triplets of these points which are denoted as
(a1, b1, c1), . . . , (am, bm, cm) ∈ [n]3. Each point pi has
some color si and opacity σi and the triangles interpolate
these attributes following barycentric weighting. When ren-
dered with random initializations, the model appears like
pieces of stained glass strewn across space (Fig. 2). The
color attributes si are implicitly dependent on the view di-
rection as they are parameterized with spherical harmonics
coefficients.

To initialize the model, the points are chosen uniformly

Figure 2. An example of the model’s random initialization. Un-
like standard rasterization, multiple triangles influence the color of
each pixel.

at random from a bounding box which the object is given
to be in. The initial color, parameterized by spherical coef-
ficients, is random while the initial opacity is chosen to be
a low value of 0.01. The triangles are chosen by comput-
ing the k-nearest neighbours of the vertices for k = 10 and
forming triangles randomly within these. This helps ensure
that there are no gaps, but it does mean that are no guar-
antees on the connectivity or topology of the triangle soup
and these are poor in practice. However, for the purpose of
rendering, these are not necessary.

Rendering pipeline. To render a ray (o, r), we first use
the MT algorithm to compute all m ray-triangle intersec-
tions o+tir as well as the barycentric coordinates ui, vi, wi.
We discard any triangles that are not actually intersected by
the ray, then sort the remaining ones by ti. For the ith trian-
gle that remains and assuming that it is sorted, we compute
its opacity σ∗

j and color s∗i at the point of intersection:

s∗i = uisa + visb + wisc,

σ∗
i = uiσa + viσb + wiσc.

Then using the single-scattering radiance formula, we com-
pute

Ti = exp

(
−

i−1∑
i=1

σ∗
i

)
,

F (o, r).rgb =

m∑
i=1

Ti(1− e−σ∗
i)s∗i ,

F (o, r).a = 1− Tm.

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#*****

CVPR
#*****

CVPR 2022 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Again, the view direction, represented as spherical coordi-
nates (θ, ϕ) is implicit in the above equations. The spherical
harmonic coefficients are linear so we only need to evalu-
ate the spherical harmonics with these angles after summing
the coefficients over the triangles.

Training. To train, we use gradient descent to optimize
over the opacity and color of each point. We choose to use
gradient descent as the output is non-linear in terms of σ
(though it is an overconstrained linear system in terms of the
color attributes s). Also, backpropagation is relatively fast
for this setup. Though the rendering pipeline is involved,
backpropagating is shallow as the opacity and color are only
present in the final step of the rendering pipeline. In partic-
ular, the t, u, v, w values computed during rendering are not
dependent on these learnt parameters.

During the training routine, we batch pixels from our im-
ages I to cast rays from and render. Then our loss is the
mean squared error between the rendered RGBA values and
the ground truth RGBA values.

After each epoch during training, the points are resam-
pled so that the new points are biased to be sampled close
to the old points with high opacity. This helps learn sur-
face details better. In particular, we choose 0.5n points with
replacement from the old points and perturb them slightly
with Gaussian noise. Then we append 0.5n completely
new points sampled uniformly at random from the original
bounding box.

4. Experiments
Setup. The experiments are solely performed on the toy

Lego model dataset [3]. This is a synthetic model with 400
training, validation, and test views, each giving an 800×800
image with RGBA values between 0 and 1. The exper-
iments were run on a NVIDIA Geforce RTX 3050 GPU.
Due to memory limitations, we downsampled all images to
100 × 100, and used a batch size of 200. In other words,
there were 100 × 100 × 100 pixels in the training set and
each batch rendered from 200, giving 5000 iterations per
epoch. We use an Adam optimizer with a learning rate of
10−3.

For our stained glass model, we choose n = 5000 points
and generate m = 50000 triangles from these vertices as
described above. The spherical harmonic coefficients are
up to order two. The Lego dataset has relatively simple
lighting conditions so it is unlikely that this choice of hy-
perparameters would have a large effect.

Results. Our results generally had poor visual quality.
This is in part due to technical limitations as we had to
downsample the images to 100× 100. It is also unfortunate
that we could only use n = 5000 points due to memory lim-
its. For comparison, [7] used 2563 ≈ 1.7 × 107 voxels. It
is likely that this directly limited the model’s ability to rep-
resent the 3D scene. Even with these reduced parameters,

Figure 3. Training loss for training loop without resampling. As
can be seen, it plateaus quickly, but fails to reach a good MSE.

Figure 4. Results on the validation set after 5 epochs. No resam-
pling was used for these results.

each epoch still took approximately 175 seconds. Hence, it
takes 1.75 seconds on average to render a single 100× 100
image of a view. However, in the following ablation study,
we find that some of our techniques helped improve the vi-
sual quality.

Ablation study. There are artifacts in the results without
using the resampling trick, as shown in Fig. 4, Fig. 5. We
can see that there are ghost triangles where there should be
empty space. However, with the exact same setup, but now
resampling after every epoch, we remove these artifacts and
find overall cleaner results as shown in Fig. 6, Fig. 7.

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#*****

CVPR
#*****

CVPR 2022 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 5. Results on the training set after 5 epochs. No resampling
was used for these results.

Figure 6. Results on the validation set after 5 epochs. Resampling
was used for these results, and fewer artifacts can be seen.

5. Conclusion

Our work proposes a novel radiance field structure based
on a triangle soup. While we do not obtain state-of-the-art
results, we hope that our progress can inspire future direc-
tions to improve this work. In particular, we believe that by
building on more modern pipelines for rendering triangles,
we can accelerate our differentiable rendering pipeline to be
competitive.

Figure 7. Results on the training set after 5 epochs. Resampling
was used for these results, and fewer artifacts can be seen.

References
[1] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie

Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 14346–14355,
2021. 1

[2] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH computer graphics, 18(3):165–
174, 1984. 1

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In European conference on computer vision, pages 405–
421. Springer, 2020. 1, 2, 3

[4] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H Mueller, Chakravarty R Alla Chaitanya, Anton
Kaplanyan, and Markus Steinberger. Donerf: Towards real-
time rendering of compact neural radiance fields using depth
oracle networks. In Computer Graphics Forum, volume 40,
pages 45–59. Wiley Online Library, 2021. 1

[5] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14335–
14345, 2021. 1

[6] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neural
scene representations with single-evaluation rendering. Ad-
vances in Neural Information Processing Systems, 34, 2021.
1

[7] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#*****

CVPR
#*****

CVPR 2022 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

els: Radiance fields without neural networks. arXiv preprint
arXiv:2112.05131, 2021. 1, 3

[8] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5752–5761,
2021. 1, 2

5

	. Introduction
	. Related Work
	. Method
	. Experiments
	. Conclusion

