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Abstract. Reconstructing an implicit 3D shape representation from a set of point samples and4
their estimated oriented normals is a key subproblem of the surface reconstruction problem. The5
indicator function of the shape is a common choice for the implicit representation as the oriented6
normals are exactly its inward gradient at the boundary and thus the problem of solving for the7
indicator function can be interpreted as a Poisson equation. We solve this using an explicit integral8
equation and we explore using the Barnes-Hut algorithm to efficiently perform the evaluation. In9
order to apply the Barnes-Hut algorithm, we derive the multipole expansion for a novel kernel. Our10
implementation achieves better runtimes than the naive approach while incurring negligible error.11
However, we find that this numerical solution does not properly generate the 3D shape.12
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1. Introduction. When raw 3D data is taken, it is in the form of point samples15

such as depth maps or LiDAR scans. Surface reconstruction is the problem of taking16

such data and converting it into more convenient representations such as triangle17

meshes. As it is important in a number of applications, many works have set out to18

find an accurate and efficient method. One of the most successful approaches in terms19

of both accuracy and runtime is the Poisson Surface Reconstruction algorithm [7, 8]20

which solves for the indicator function χ given a point cloud with oriented normals.21

In particular,22

∇χ = −n⃗ |∂Ω23

where n⃗ is the vector field induced by the outward normals and ∂Ω is the surface24

of the solid which the points are sampled from. It can be shown using variational25

methods that the minimization problem minχ ||∇χ+ n⃗|| is equivalent to the Poisson26

problem27

∇2χ = −∇ · n⃗28

and so we have transformed this graphics problem into a PDE problem. There are29

many techniques for dealing with such an equation. However, most are reliant on30

a regular grid domain while the point samples can be located arbitrarily. Instead,31

following [11], we use an explicit solution to this Poisson problem which can be derived32

from the Gauss lemma [13]. This solution is in the form of a boundary integral33

equation34

χ(x) =

∫
∂Ω

K(x, y)dy35

for kernel function to be introduced. As we only have discrete point samples, this36

integral is discretized into a weighted sum.37

Fast evaluation of such convolutions has been developed for physics applications,38

particularly that of the n-body gravitational potential problem. Given n point samples39

(acting as potential sources) and n evaluation points (acting as targets), the Fast40

Multipole Method provides evaluations in O(n log n) which can be further improved41
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2 VICTOR RONG

to O(n) [5]. This algorithm operates by using the multipole expansion of the kernel42

function being evaluated. Early works only derived said formulas for a small, but43

common, set of kernel functions but it was later generalized to black-box kernels [14].44

Our work uses a kernel which was not part of the small set. As such, we derive an45

expansion for this novel kernel. Using this expansion, we implement the O(n log n)46

Barnes-Hut algorithm, a simpler version of the FMM.47

In summary, our contributions are as follows:48

• We reduce the original kernel to a different, radially symmetric kernel and49

derive its multipole expansion with guarantees on the error.50

• We extend this derivation to find the multipole expansion of a class of kernels.51

• We provide a Python implementation for surface reconstruction in O(n log n)52

time using the Barnes-Hut algorithm.53

2. Related Work.54

Surface reconstruction. Despite the challenging nature of the problem, there55

have been a wide array of approaches to solving the surface reconstruction problem.56

The goal of these methods is to improve the accuracy of the reconstruction, the run-57

time which the it requires, and its robustness to noisy or partial data. Many early58

works approached the problem from a combinatorial perspective, focusing on drawing59

edge connections directly from the point cloud vertices. For example, Amental etal60

[1] use the Voronoi diagram of the point cloud to establish connectivity, and Bernar-61

dini etal [3] find triangles of the mesh by pivoting balls of various sizes about the62

points. Due to the local nature of these methods, they have trouble against noisy63

data. Implicit methods, on the other hand, are often more robust to noise while64

also demonstrating good speed and accuracy. These methods construct an implicit65

representation of the data and then apply the Marching Cubes algorithm to obtain66

a triangle mesh from occupancy samples [10]. Generally, either the signed distance67

function (SDF) or indicator function is used as they are simple and provide occupancy68

information. One of the earliest such methods [6], estimates the SDF at a set of tar-69

get points. They find that the orientations of the normals are particularly important70

and develop a technique for reorienting them. Another work [4] represents the signed71

distance function with radial basis functions (RBFs). Like our method, this work72

uses FMM-based techniques to efficiently evaluate the RBFs. As mentioned earlier,73

Kazhdan etal. [7, 8] instead considers the indicator function χ and constructs the74

PDE ∇2χ = −∇ · n⃗. They represent the indicator function in a basis of multiresolu-75

tion functions with finite support and solve the problem as a linear system, using the76

positive definiteness of the Laplacian to efficiently invert the operator. Lu etal [11]77

also uses the Poisson formulation and instead considers the explicit solution based on78

integral equations. They propose a subquadratic algorithm based on the FMM for79

evaluating the integral, but their method gives no reason to expect low error relative80

to the naive evaluation method. Our work extends that of [11] and is able to achieve81

the same time complexity while having guaranteed bounds on the error.82

Fast Multipole Methods. It is famously known that the n-body problem has83

no closed form solution in general, but the model can instead be simulated. As there84

are O(n2) interactions between them, we can directly compute the potentials on each85

body in O(n2). This can become impractical for large n and so algorithms have been86

developed to speed up the evaluation with some controllable error that can be made to87

hit machine precision. In an abuse of terminology, we will refer to any such method88

as a fast multipole method, though we note that many use this term to refer to a89
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SURFACE RECONSTRUCTION USING BOUNDARY INTEGRAL EQUATIONS 3

specific algorithm [5]. Rokhlin [12] was the first to break through the O(n2) algorithm,90

creating an O(n) method for evaluating the potential in the 2D domain. The crucial91

observation was the interactions between two far clusters can be approximated well.92

This method derived a separable multipole expansion to the kernel as well as formulas93

for translating the expansions. Around the same time, an O(n log n) algorithm for94

evaluating the potential in 3D was published by Barnes and Hut, now called the95

Barnes-Hut algorithm [2]. This method also leveraged the clustering idea and used96

an octree structure to specify O(n log n) pairs of clusters. Due to the different natures97

of the 2D and 3D potentials, it was challenging to reach O(n) in 3D as well. A decade98

after the Barnes-Hut algorithm was published, Greengard and Rokhlin [5] were finally99

able to do so. Their algorithm requires five operators on the multipole expansion of100

the kernel: source-to-multipole, multipole-to-multipole, multipole-to-local, local-to-101

local, and local-to-target [9]. In comparison, the Barnes-Hut algorithm only needs the102

source-to-multipole operator to achieve numerical accuracy at the cost of an extra log n103

factor in the time complexity. As it is cumbersome to derive each of these operators104

for any such kernel, Ying etal [14] proposed a black box method to approximate these105

operators.106

3. Multipole Expansion. In this section, we specify the kernel we are working107

with and derive its multipole expansion for later use in the algorithm.108

Lemma 3.1 (Gauss Lemma [13, 11]). Let Ω be an open region in R3 and let Ω109

and ∂Ω be its closure and boundary, respectively. Let χ : R3 → R be such that110

χ(x) =

∫
∂Ω

∂G

∂n⃗(y)
(x, y)dy111

for any x ∈ R3 and G the Green’s function for the Laplace equation. Then χ is exactly112

the indicator function of Ω.113

So the kernel K(x, y) = ∂G
∂n⃗(y) (x, y). In particular,114

G(x, y) = − 1

4π

1

||x− y||
=⇒ ∂G

∂n⃗(y)
(x, y) = − 1

4π

(x− y) · n⃗(y)
||x− y||3

.115

Note that Lu etal [11] set the kernel to zero when ||x−y|| is sufficiently small in order116

to remove the singularities, but we allow for these to persist.117

Instead of directly finding the multipole expansion of K(x, y), we will work with118

a new radially symmetric kernel defined as K0(x, y) := − 1
4π

1
||x−y||3 . Then119

K(x, y) = − 1

4π

(x− y) · ⃗n(y)

||x− y||3
120

= (x− y) · ⃗n(y)K0(x, y)121

= (x · n(y))K0(x, y)− (y · n(y))K0(x, y).122123

Before we can give our results on the multipole expansion of K0(x, y), we must124

establish a few lemmas on spherical harmonics from [5]. We use the convention125

Y m
n (θ, ϕ) :=

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos(θ))eimϕ,126

where Pm
n are the associated Legendre polynomials. Also, Y m∗

n denotes complex127

conjugation and is equal to (−1)mY −m
n .128
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4 VICTOR RONG

Lemma 3.2 (Generating Function of Legendre Polynomials). For µ < 1,129

1√
1− 2uµ+ µ2

=

∞∑
n=0

Pn(u)µ
n

130

where Pn(u) are the Legendre polynomials.131

Lemma 3.3 (Derivatives of Legendre Polynomials). For any n ≥ 1,132

(2n+ 1)Pn(u) = P ′
n+1(u)− P ′

n−1(u).133

Lemma 3.4 (Addition Theorem). Let x, y ∈ R3 have spherical coordinates134

(r, θ, ϕ) and (ρ, α, β). Let γ be the angle between x and y at the origin. Then135

Pn(cos(γ)) =
4π

2n+ 1

n∑
m=−n

Y m∗
n (α, β)Y m

n (θ, ϕ).136

With these in hand, we can now derive the multipole expansion of K0(x, y).137

Theorem 3.5 (Multipole Expansion). Let x, y ∈ R3 have spherical coordinates138

(r, θ, π) and (ρ, α, β) with ρ < r. Then139

− 1

4π

1

||x− y||3
= −

∞∑
t=1

ρt−1

rt+2

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

n∑
m=−n

Y m∗
n (α, β)Y m

n (θ, ϕ).140

Furthermore, for any p ∈ N,141 ∣∣∣∣∣− 1

4π

1

||x− y||3
+

p∑
t=1

ρt−1

rt+2
(· · · )

∣∣∣∣∣ ≤ O

(
1

(r − ρ)3

(ρ
r

)p)
.142

Proof. Let γ be the angle between x and y at the origin. By the Law of Cosines,143

||x− y|| =
√
r2 − 2rρ cos γ + ρ2144

= r

√
1− 2

(ρ
r

)
cos γ +

(ρ
r

)2
145
146

Let µ = ρ
r < 1 and u = cos γ. Then we have147

K0(x, y) = − 1

4π

1

||x− y||3
148

= − 1

4π

1

r3
√

1− 2uµ+ µ2
3149

150

Note from Lemma 3.2 that151

1√
1− 2uµ+ µ2

3 =
1

µ

d 1√
1−2uµ+µ2

du
152

=

∞∑
t=1

P ′
t (u)µ

t−1.153

154
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SURFACE RECONSTRUCTION USING BOUNDARY INTEGRAL EQUATIONS 5

From Lemma 3.3, we have that P ′
t (u) = (2t−1)Pt−1(u)+(2t−3)Pt−3(u)+ . . . . Using155

Lemma 3.4, this can be written in a separate manner with spherical harmonics.156

P ′
t (u) = (2t− 1)Pt−1(u) + (2t− 3)Pt−3(u) + . . .157

=

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

(2n+ 1)Pn(u)158

= 4π

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

n∑
m=−n

Y m∗
n (α, β)Y m

n (θ, ϕ).159

160

Plugging this in, we get the desired expansion:161

K0(x, y) = − 1

4π

1

||x− y||3
162

= − 1

4π

1

r3
√
1− 2uµ+ µ2

3163

= − 1

4π

1

r3

∞∑
t=1

P ′
t (u)µ

t−1
164

= − 1

4π

∞∑
t=1

ρt−1

rt+2
P ′
t (u)165

= −
∞∑
t=1

ρt−1

rt+2

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

n∑
m=−n

Y m∗
n (α, β)Y m

n (θ, ϕ).166

167

To show the convergence results, note that for u ∈ [−1, 1], we have |P ′
n(u)| ≤ t2. Then168

the tail sum is169 ∣∣∣∣∣
∞∑

t=p+1

P ′
t (u)

ρt−1

rt+2

∣∣∣∣∣ ≤
∞∑

t=p+1

∣∣∣∣P ′
t (u)

ρt−1

rt+2

∣∣∣∣170

≤
∞∑

t=p+1

t2
ρt−1

rt+2
171

= O

(
1

r3

(
1

1− ρ
r

)3 (ρ
r

)p)
172

= O

(
1

(r − ρ)3

(ρ
r

)p)
173
174

Theorem 3.6 (Multipole Expansion). Let x, y ∈ R3 have spherical coordinates175

(r, θ, π) and (ρ, α, β) with ρ < r. Then for any j ∈ N, there exist coefficients Ctnm ∈ R176

such that177

1

||x− y||2j+1
=

∞∑
t=j

ρt−j

rt+j+1

t−j∑
n=0

n∑
m=−n

CtnmY m∗
n (α, β)Y m

n (θ, ϕ).178
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6 VICTOR RONG

Note that the truncation of the first p terms can be evaluated in O(p3) operations179

assuming that the spherical harmonics can be evaluated in O(1). We omit the proof180

of this generalization as it is similar to that of Theorem 3.5 and not relevant to our181

problem.182

4. Algorithm. We now have all the tools necessary to perform the Barnes-Hut183

algorithm in this setting. A high level idea of the algorithm is shown in Algorithm 4.1184

with further details below.185

Algorithm 4.1 Barnes-Hut algorithm

Targets {xi}1≤i≤n, sources {yj}1≤j≤n with normals {nj}1≤j≤n

Build octree O from {xi} ∪ {yj}
for node o ∈ O do
Build near neighbour list Jo
Build interaction list Io
Compute mean yo, the average of sources yj ∈ o
Compute moments M tkm

o , N tkm
o from sources yj ∈ o according to (4.1) and (4.2)

end for
Set χi = 0 as the indicator function at xi for 1 ≤ i ≤ n
for node o ∈ O do
for node o′ ∈ Io do
for target xi ∈ o do
Update χi according to (4.3)

end for
end for
for node o′ ∈ Jo do
if o or o′ is a leaf node then

for target xi ∈ o do
Update χi naively

end for
end if

end for
end for
return χ

The initial input is a list of n points yi ∈ R3 and the oriented normals ni at these186

points, as well as a list of n targets xi ∈ R3. For simplicity, the number of sources187

and targets is set to be the same, but this is not necessary. Then the desired output188

is the indicator function evaluated at each target. In other words, for all 1 ≤ i ≤ n,189

we want190

χ(xi) =

∫
∂Ω

K(xi, yj)dy191

=

n∑
j=1

mjK(xi, yj)192

193

where mj are weights associated with each source in order to discretize the integral.194

We choose mj to be proportional to the square of the average of the distance from yj195

to the 10 sources nearest to it.196

We construct an octree on the union of the sources and targets so that each leaf197

node only has one point. For each node oi in the octree, the near neighbours of oi are198
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SURFACE RECONSTRUCTION USING BOUNDARY INTEGRAL EQUATIONS 7

the nodes oj at the same level whose bounding box touches the bounding box of oi.199

Thus a node can have up to 27 near neighbours. Nodes at the same level as oi and200

which are not near neighbours are said to be well separated from oi. The interaction201

list of oi are the well separated nodes of oi which are also children of oi’s parent’s202

near neighbours (see Figure 1). There can be up to 189 nodes in the interaction list203

for a single node.204

Fig. 1. The interaction list displayed for a quadtree from [5]. The near neighbours of the
marked square are the black squares and the interaction list is the ring of white squares about the
near neighbours.

For a node oi and a node oj in its interaction list, we can compute the forces205

from the s sources in Oj to the t targets in Oi in O(s+ t). For convenience, say the s206

sources are y1, y2, . . . , ys and the t targets are x1, x2, . . . , xt. Let y be the mean of the207

sources. For each i, let us write xi−y in spherical coordinates as (ri, θi, ϕi). Similarly,208

we write yj − y as (ρj , αj , βj). Note that the well-separated property guarantees that209

maxj ρj <
1
2 mini ri which is important for the convergence of our method. The actual210

contribution of y1, y2, . . . , ys to the indicator function at xi is211

χ(xi) +=

s∑
j=1

mjK(xi, yj)212

=

s∑
j=1

mjK(xi, yj)213

=

s∑
j=1

mj ((xi − yj) · nj)K0(xi, yj)214

215216

Using Theorem 3.5, we can expand K0(xi, yj) to the first p terms. In practice,217
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8 VICTOR RONG

we choose p = 4.218

=

s∑
j=1

mj ((xi − yj) · nj)K0(xi − y, yj − y)219

≈ −
s∑

j=1

mj ((xi − yj) · nj)

p∑
t=1

ρt−1
j

rt+2
i

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

n∑
m=−n

Y m∗
n (αj , βj)Y

m
n (θi, ϕi)220

= −
p∑

t=1

Y m
n (θi, ϕi)

rt+2
i

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

n∑
m=−n

s∑
j=1

mj ((xi − yj) · nj) ρ
t−1
j Y m∗

n (αj , βj)221

= −
p∑

t=1

Y m
n (θi, ϕi)

rt+2
i

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

n∑
m=−n

[
xi ·

( s∑
j=1

mjnjρ
t−1
j Y m∗

n (αj , βj)
)

222

−
( s∑

j=1

mj(yj · nj)ρ
t−1
j Y m∗

n (αj , βj)
)]

.223

224

On the face of it, this seems to be O(st) operations to compute this for all targets.225

But the inner terms are the only piece dependent on j, so this sum is separable. Define226

moments227

M tkm :=

s∑
j=1

mj(yj · nj)ρ
t−1
j Y m∗

n (αj , βj),(4.1)228

N tkm :=

s∑
j=1

mjnjρ
t−1
j Y m∗

n (αj , βj).(4.2)229

230

(Note that M is a scalar while N is a vector.) It takes O(s) time to compute this for231

each node over its s contained sources. Then we can use these precomputed values to232

write our scary expression as233

(4.3) χ(xi) += −
p∑

t=1

Y m
n (θi, ϕi)

rt+2
i

⌊ t+1
2 ⌋∑

k=1
n=t+1−2k

n∑
m=−n

[
xi ·N tkm −M tkm

]
234

which is O(t) to do over all t targets. At the finest level, the naive algorithm is applied235

between near neighbours which is fine as there are O(1) points. The number of times236

a point is contained in an octree node is bounded by its height. Assuming a relatively237

uniform distribution of points, the height of the octree is O(log n). Modifications are238

possible to account for all distributions, but we do not consider this. So given this239

assumption, the total time complexity for our algorithm is indeed O(n log n).240

The indicator function can be used as input to an isosurface extraction algorithm241

such as Marching Cubes. We choose our target points close to the sources as we want242

to sample the surface closely. Then, we use an octree to fill in a regular grid so that243

Marching Cubes can be applied directly. We choose χ(x) = 0.5 as our isosurface.244
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5. Experiments.245

Software & Hardware. The implementation was done in Python3 using the246

NumPy library for vectorized mathematical operations. A number of other libraries247

were used for specialized purposes, particularly SciPy’s spherical harmonics function,248

scikit-learn’s nearest neighbours function for efficiently estimating the source weights,249

and scikit-image’s Marching Cubes implementation. We use Open3D to load and250

visualize 3D shapes and Matplotlib for plotting. All experiments were run on a251

personal laptop with an Intel(R) Core(TM) i5-10300H CPU.252

Fig. 2. The runtime of our methods. Naive refers to the brute-force O(N2) method while
Barnes-Hut is our O(N logN) method with p = 4. We also tested with Kazhdan etal’s implementa-
tion of Screened Poisson Surface Reconstruction (SPSR) [8].

Fig. 3. The absolute error between the naive method and the Barnes-Hut method for p = 4.

Runtime and Error. Figure 2 shows the runtimes of our methods as N , the253

number of sources and targets, grows. In particular, on the log-log plot, Barnes-Hut254

has a slope slightly greater than 1 and Naive has a slope around 2, which aligns255
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10 VICTOR RONG

with what we would expect. The constant on Barnes-Hut is heavy and so it only256

outperforms the naive algorithm after N = 215. At this point, the naive algorithm257

hits a memory cap and so we cannot test further on our machine. We also tested258

against a library implementation of Screened Poisson Surface Reconstruction for a259

benchmark. This implementation has Marching Cubes wrapped into it which is likely260

dominating the runtime without depending on N , hence the plateau.261

We also plot the error for fixed p and increasing N in Figure 3. The indicator262

obtained by the naive method is assumed to be the ground truth as this plot is263

concerned with the error from our numerical approximations of the kernel. As can264

be seen, p = 4 has reasonable error considering the values are generally in [0, 1]. As265

expected, the error increases as N does too from aggregation.266

Fig. 4. The runtime and error for the Barnes-Hut approach with varying p.

We repeat these experiments with fixed N and changing p in Figure 4. The267

formulas for the multipole expansion suggest that the runtime should be proportional268

to O(p3) and we confirm this by plotting p3 versus the runtime for fixed N . On the269

other hand, the lower plot suggests that the error has a geometric rate of convergence270

O(e−µp) for some index µ as we expect from Theorem 3.5. Thus, there is a simple271

tradeoff between runtime and error for the choice of p.272

This manuscript is for review purposes only.



SURFACE RECONSTRUCTION USING BOUNDARY INTEGRAL EQUATIONS 11

Reconstruction Quality. The truncation error in the multipole expansion is273

not the only relevant error. The error arising from the use of the boundary integral274

equation is arguably more important. Figure 5 plots the indicator function generated275

by samples on a sphere against the distance of the points to the origin. The set of276

points for which χ > 0.5 is almost precisely the set of points within a distance of 1 as277

desired.278

Fig. 5. The indicator function for the unit sphere.

Fig. 6. The Stanford bunny (left) and unit sphere (right) reconstructed using our algorithm.
Each had 2048 sources and 2048 targets sampled close to the sources as their input. The indicator
function was then filled into a 32× 32× 32 grid and Marching Cubes was applied.

However, for more complex meshes, we do not obtain good results. We see qual-279

itatively in Figure 6 that the even though our method is accurate compared to the280

naive implementation of the boundary integral equation, it seems that the reconstruc-281

tion is still lacking. As can be seen, our method was only loosely able to reconstruct282

the Stanford bunny. In fact, the bunny is missing its entire left half and the sphere has283

an unnecessary surface. The jaggedness is likely an artifact of the Marching Cubes284

algorithm, but this is in some ways inevitable as we only take 2048 evaluations.285

This poor reconstruction quality can in part be explained by the singular nature286
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of the boundary integral equation. The estimated indicator changes quickly at the287

surface and even slight noise could cause it to be thrown off as a result. In particular,288

the bunny’s ears in Figure 6 are completely missing as they likely posed a challenge289

to the integration equation due to their proximity but opposing normal directions.290

The sampling of the point cloud also becomes crucial as a result of the singularities.291

Artificially producing more samples based on a point’s normal could help alleviate this292

issue by implicitly smoothing out the sample set. Furthermore, the boundary integral293

equation is a global method. While the kernel does decay quickly, it is difficult to294

express finer details on the surfaces.295

6. Conclusion. In this paper, we proposed approaching the surface reconstruc-296

tion problem from a boundary integral equation viewpoint. In order to apply fast297

methods, we derived a novel multipole expansion for the kernel in question. Our re-298

sults show that our fast method achieves good error and runtime relative to the naive299

approach, but is unable to obtain even decent reconstruction quality. Future work300

should focus on mitigating the singularities and improving the runtime’s constant301

factor. Finally, an interesting extension would be to leverage the structure of the302

boundary integral equation to perform streaming surface reconstruction of dynamic303

point clouds.304
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