Problem 1: Ehrmann's Third Lemoine Circle [2]

Let $A B C$ be a triangle with circumcenter O and Lemoine point K. The circumcircle of $K B C$ intersects lines $A B$ and $A C$ again at points A_{c} and A_{b}, respectively. $B_{a}, B_{c}, C_{b}, C_{a}$ are defined similarly. Prove that $A_{c} A_{b} B_{a} B_{c} C_{b} C_{a}$ is cyclic and that its circumcenter M lies on line $O K$ such that $O K: K M=2: 1$.

a) Prove that K is the centroid of $\triangle A A_{c} A_{b}$.
b) Prove that $B_{c} C_{b} \| B C$.

Problem 2: Parry Reflection Point [3]

Let $A B C$ be a triangle and let α, β, γ be three parallel lines passing through A, B, and C, respectively. Let α^{\prime} be the reflection of α over $B C$ and define β^{\prime} and γ^{\prime} similarly. Prove that $\alpha^{\prime}, \beta^{\prime}$, and γ^{\prime} concur if and only if α, β, γ are parallel to the Euler line of $A B C$.

a) (Anti-Steiner Point). Let ℓ be a line in the plane of a triangle $A B C$. Prove that its reflections in the sidelines $B C, C A$, and $A B$ are concurrent if and only if ℓ passes through the orthocenter H of $A B C$. In this case, their point of concurrency lies on the circumcircle.
b) Let P be a point in the plane of $A B C$ and let ℓ be a line parallel to α, β, γ and passing through P. Prove that the bisectors of the three angles formed by ℓ with each of $\alpha^{\prime}, \beta^{\prime}$, and γ^{\prime} form a triangle homothetic to $A B C$.

Problem 3: Fontene's Third Theorem [4]

Let $A B C$ be a triangle with circumcenter O. Let P and Q be isogonal conjugates with respect to triangle $A B C$. Prove that the pedal circle of P is tangent to the nine-point circle of $A B C$ if and only if O, P, and Q are collinear.

a) Let $A B C$ be a triangle with circumcenter O and let P be a point in the plane. Let $A_{1} B_{1} C_{1}$ be the medial triangle of $A B C$ and let $A_{2} B_{2} C_{2}$ be the pedal triangle of P with respect to triangle $A B C$. Let L be the reflection of A_{2} over line $B_{1} C_{1}$. Let F be the foot of the perpendicular from A to line $O P$. Prove that $F L, B_{1} C_{1}$, and $B_{2} C_{2}$ are concurrent.
b) (Fontene's First Theorem). With the same points above, let X be the intersection of $B_{1} C_{1}$ and $B_{2} C_{2}$. Define Y and Z similarly. Prove that $A_{2} X, B_{2} Y, C_{2} Z$ are concurrent, and that the point of concurrency lies on the circumcircle of $A_{1} B_{1} C_{1}$ and the circumcircle of $A_{2} B_{2} C_{2}$.
c) (Fontene's Second Theorem). If a point P moves on a fixed line ℓ which passes through the circumcenter O of $A B C$, then the pedal circle of P intersects the nine-point circle of $A B C$ at a fixed point.

Problem 4: Lester's Theorem [1]

Let $A B C$ be a triangle with circumcenter O, nine-point center N, and Fermat points F_{1} and F_{2}. Prove that O, N, F_{1}, F_{2} are concyclic.

a) (Fermat Points.) Equilateral triangles $B C A_{1}$ and $B C A_{2}$ are drawn such that A_{1}, A are on opposite sides of $B C$ and A_{2}, A are on the same side of $B C . B_{1}, B_{2}, C_{1}, C_{2}$ are constructed similarly. Prove that the circumcircles of $B C A_{1}, C A B_{1}, A B C_{1}$ concur at a point F_{1} and the circumcircles of $B C A_{2}, C A B_{2}, A B C_{2}$ concur at a point F_{2}. These two points of concurrency are known as the first and second Fermat points, respectively.
b) Let G be the centroid of $A B C$. Let T_{a} and S_{a} be the circumcenters of $B C A_{1}$ and $B C A_{2}$, respectively and define $T_{b}, S_{b}, T_{c}, S_{c}$ similarly. Prove that $S_{a} S_{b} S_{c} F_{1}$ and $T_{a} T_{b} T_{c} F_{2}$ are two cyclic quadrilaterals with circumcenter G.
c) Let $X Y Z$ be a triangle and let Y^{\prime} and Z^{\prime} be the reflections of Y and Z over $X Z$ and $X Y$, respectively. Let ℓ be the tangent to the circumcircle of $X Y^{\prime} Z^{\prime}$ at X. Lines $Y Z$ and $Y^{\prime} Z^{\prime}$ intersect ℓ at points W and W^{\prime} respectively. Prove that X is the midpoint of $W W^{\prime}$.
d) Prove that the Euler line of $A B C$ is tangent to the circumcircle of $G F_{1} F_{2}$.

References

[1] Nikolai Ivanov Beluhov. An Elementary Proof of Lester's Theorem. https://jcgeometry. org/Articles/Volume1/JCG2012V1pp53-56.pdf, 2012.
[2] Darij Grinberg. Ehrmann's Third Lemoine Circle. https://jcgeometry.org/Articles/ Volume1/JCG2012V1pp40-52.pdf, 2012.
[3] Cosmin Pohoata. On the Parry Reflection Point. https://forumgeom.fau.edu/ FG2008volume8/FG200806.pdf, 2008.
[4] Nguyen Duc Toan. Anti-Steiner Point Revisited. https://www.awesomemath.org/ wp-pdf-files/math-reflections/mr-2020-06/mr_6_2020_anti-steiner_point_ revisited.pdf, 2020.

