Incircles

Victor Rong
July 13, 2021

Lemma 1

Let $A B$ be a chord in circle Ω and M be the midpoint of arc $A B$. Circle ω lies on the opposite side of $A B$ as M and is tangent to segment $A B$ and Ω at points P and Q respectively. Then P, Q, and M are collinear.

Lemma 2

Let Ω_{1}, Ω_{2} be two circles intersecting at points A and B. Two circles ω_{1}, ω_{2} lie on the same of $A B$ and are each tangent to Ω_{1} and Ω_{2} at points P_{1}, Q_{1} and P_{2}, Q_{2}, respectively. Then P_{1}, Q_{1}, P_{2}, and Q_{2} are concyclic.

Theorem 1: Sawayama-Thébault

Let $A B C$ be a triangle with incenter I. Let D be a point on $B C$. Let I_{1} be the center of the circle that touches segments $A D, D B$, and the circumcircle of $A B C$, and let I_{2} be the center of the circle that touches segments $A D, D C$, and the circumcircle of $A B C$. Then I_{1}, I_{2}, and I are collinear.

Theorem 2: Pitot's Theorem

Let $A B C D$ be a convex quadrilateral. Then $A B C D$ has an incircle if and only if

$$
A B+C D=A D+B C .
$$

Lemma 3

Let $A B C D$ be a bicentric quadrilateral with incenter I and circumcenter O. Let $W X Y Z$ be the intouch quadrilateral. Then the diagonals of $A B C D$ and the diagonals of $W X Y Z$ concur at a point P. Furthermore, P is on line $O I$.

Theorem 3: Monge's Theorem

Let $\omega_{1}, \omega_{2}, \omega_{3}$ be circles in the plane. Denote the external center of similitude between ω_{j}, ω_{k} as $A_{j k}$ and the internal center of similitude as $B_{j k}$. Then for i, j, k a permutation of $\{1,2,3\}$, we have $A_{i j}, A_{j k}, A_{k i}$ collinear and $A_{i j}, B_{j k}, B_{k i}$ collinear.

A Problems

A1. Prove the lemmas and Monge's Theorem.
A2. Let $A B C D$ be a bicentric quadrilateral with intouch quadrilateral $W X Y Z$. Prove that the diagonals of $W X Y Z$ are perpendicular to one another.
A3. (ELMO 2011). Let $A B C D$ be a convex quadrilateral. Let E, F, G, H be points on segments $A B, B C, C D, D A$, respectively, and let P be the intersection of $E G$ and $F H$. Given that quadrilaterals $H A E P, E B F P, F C G P, G D H P$ all have inscribed circles, prove that $A B C D$ also has an inscribed circle.

A4. (Japan MO 2009). Let Γ be a circumcircle. A circle with center O touches to line segment $B C$ at P and touches the arc $B C$ of Γ which doesn't have A at Q. If $\angle B A O=\angle C A O$, then prove that $\angle P A O=\angle Q A O$.

A5. (ARMO 2018). Circle ω is tangent to sides $A B, A C$ of triangle $A B C$. A circle Ω touches the side $A C$ and line $A B$ (produced beyond B), and touches ω at a point L on side $B C$. Line $A L$ meets ω, Ω again at K, M, respectively. It turned out that $K B \| C M$. Prove that $\triangle L C M$ is isosceles.
A6. (ISL 2005). Given a triangle $A B C$ satisfying $A C+B C=3 \cdot A B$. The incircle of triangle $A B C$ has center I and touches the sides $B C$ and $C A$ at the points D and E, respectively. Let K and L be the reflections of the points D and E with respect to I. Prove that the points A, B, K, L lie on one circle.

A7. (CMO 2012). Let $A B C D$ be a convex quadrilateral and let P be the point of intersection of $A C$ and $B D$. Suppose that $A C+A D=B C+B D$. Prove that the internal angle bisectors of $\angle A C B, \angle A D B$ and $\angle A P B$ meet at a common point.

B Problems

B1. (Germany MO 2009). Let $A B C D$ be a convex quadrilateral and let N be the intersection of diagonals $A C$ and $B D$. Denote by a, b, c, d the length of the altitudes from N to $A B, B C, C D, D A$, respectively. Prove that $\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{d}$ if and only if $A B C D$ has an incircle.
B2. (USA TSTST 2017). Let $A B C$ be a triangle with incenter I. Let D be a point on side $B C$ and let ω_{B} and ω_{C} be the incircles of $\triangle A B D$ and $\triangle A C D$, respectively. Suppose that ω_{B} and ω_{C} are tangent to segment $B C$ at points E and F, respectively. Let P be the intersection of segment $A D$ with the line joining the centers of ω_{B} and ω_{C}. Let X be the intersection point of lines $B I$ and $C P$ and let Y be the intersection point of lines $C I$ and $B P$. Prove that lines $E X$ and $F Y$ meet on the incircle of $\triangle A B C$.

B3. (USA TST 2010). Let $A B C$ be a triangle. Point M and N lie on sides $A C$ and $B C$ respectively such that $M N \| A B$. Points P and Q lie on sides $A B$ and $C B$ respectively such that $P Q \| A C$. The incircle of triangle $C M N$ touches segment $A C$ at E. The incircle of triangle $B P Q$ touches segment $A B$ at F. Line $E N$ and $A B$ meet at R, and lines $F Q$ and $A C$ meet at S. Given that $A E=A F$, prove that the incenter of triangle $A E F$ lies on the incircle of triangle $A R S$.
B4. (ARMO 2016). In triangle $A B C, A B<A C$ and ω is the incircle. The A-excircle is tangent to $B C$ at A^{\prime}. Point X lies on $A A^{\prime}$ such that segment $A^{\prime} X$ doesn't intersect with ω. The tangents from X to ω intersect with $B C$ at Y, Z. Prove that the sum $X Y+X Z$ not depends to point X.

B5. (ISL 2006). A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incenter of triangle $B C D$. Prove that the line $K L$ intersects the line segment $A J$ at its midpoint.
B6. (ISL 2017). A convex quadrilateral $A B C D$ has an inscribed circle with center I. Let I_{a}, I_{b}, I_{c} and I_{d} be the incenters of the triangles $D A B, A B C, B C D$ and $C D A$, respectively. Suppose that the common external tangents of the circles $A I_{b} I_{d}$ and $C I_{b} I_{d}$ meet at X, and the common external tangents of the circles $B I_{a} I_{c}$ and $D I_{a} I_{c}$ meet at Y. Prove that $\angle X I Y=90^{\circ}$.

C Problems

C1. (ISL 2007). Point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the incircle of triangle $C P D$, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles $A P D$ and $B P C$ at points K and L, respectively. Let lines $A C$ and $B D$ meet at E, and let lines $A K$ and $B L$ meet at F. Prove that points E, I, and F are collinear.
C2. (ISL 2015). Let $A B C D$ be a convex quadrilateral, and let P, Q, R, and S be points on the sides $A B, B C, C D$, and $D A$, respectively. Let the line segment $P R$ and $Q S$ meet at O. Suppose that each of the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$ has an incircle. Prove that the lines $A C, P Q$, and $R S$ are either concurrent or parallel to each other.

C3. (China TST 2016). In cyclic quadrilateral $A B C D, A B>B C, A D>D C, I, J$ are the incenters of $\triangle A B C, \triangle A D C$ respectively. The circle with diameter $A C$ meets segment $I B$ at X, and the extension of $J D$ at Y. Prove that if the four points B, I, J, D are concyclic, then X, Y are the reflections of each other across $A C$.

C4. (IMO 2008). Let $A B C D$ be a convex quadrilateral with $B A \neq B C$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents to ω_{1} and ω_{2} intersect on ω.
C5. (Poland MO 2016). Let I be an incenter of $\triangle A B C$. Denote $D, S \neq A$ intersections of $A I$ with $B C, O(A B C)$ respectively. Let K, L be incenters of $\triangle D S B, \triangle D C S$. Let P be a reflection of I with the respect to $K L$. Prove that $B P \perp C P$.

C6. (ISL 2009). Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2} and I_{3} the incenters of $\triangle A B M, \triangle M N C$ and $\triangle N D A$, respectively. Prove that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.

C7. (ISL 2012). Let $A B C D$ be a convex quadrilateral with non-parallel sides $B C$ and $A D$. Assume that there is a point E on the side $B C$ such that the quadrilaterals $A B E D$ and $A E C D$ are circumscribed. Prove that there is a point F on the side $A D$ such that the quadrilaterals $A B C F$ and $B C D F$ are circumscribed if and only if $A B$ is parallel to $C D$.
C8. (ISL 2010). Three circular arcs γ_{1}, γ_{2}, and γ_{3} connect the points A and C. These arcs lie in the same half-plane defined by line $A C$ in such a way that arc γ_{2} lies between the arcs γ_{1} and γ_{3}. Point B lies on the segment $A C$. Let h_{1}, h_{2}, and h_{3} be three rays starting at B, lying in the same half-plane, h_{2} being between h_{1} and h_{3}. For $i, j=1,2,3$, denote by $V_{i j}$ the point of intersection of h_{i} and γ_{j} (see the Figure below). Denote by $\widehat{V_{i j} V_{k j}} \widehat{V_{k l} V_{i l}}$ the curved quadrilateral, whose sides are the segments $V_{i j} V_{i l}, V_{k j} V_{k l}$ and arcs $V_{i j} V_{k j}$ and $V_{i l} V_{k l}$. We say that this quadrilateral
is circumscribed if there exists a circle touching these two segments and two arcs. Prove that if the curved quadrilaterals $\widehat{V_{11} V_{21}} \widehat{V_{22} V_{12}}, \widehat{V_{12} V_{22}} \widehat{V_{23} V_{13}}, \widehat{V_{21} V_{31}} \widehat{V_{32} V_{22}}$ are circumscribed, then the curved quadrilateral $\widehat{V_{22} V_{32}} \widehat{V_{33} V_{23}}$ is circumscribed, too.

