Complete Quadrilaterals and the Miquel Point

Victor Rong

July 9, 2021

Theorem 1: Miquel's Theorem
Let $A B C$ be a triangle and let D, E, F be points on lines $B C, C A$, and $A B$ respectively. Then the circumcircles of $A E F, B F D$, and $C D E$ intersect at a point known as the Miquel point.

Theorem 2: Miquel's Theorem for a Complete Quadrilateral

Let $A B C D$ be a quadrilateral and let $P:=A C \cap B D, Q:=A B \cap C D$, and $R:=A D \cap B C$. Then the circumcircles of $Q A D, Q B C, R A B$, and $R C D$ intersect at a point known as the Miquel point.

Lemma 1: Spiral Similarity

M is the center of spiral similarity for pairs of lines $A B, C D ; A D, B C ; R A, C Q ; R B, D Q$; and $R C, A Q$.

Lemma 2

The angle bisectors for $\angle A M C, \angle B M D$, and $\angle Q M R$ are the same line and

$$
M A \cdot M C=M B \cdot M D=M Q \cdot M R
$$

Lemma 3

Inversion about M with power $M A \cdot M C$ and reflecting about the angle bisector of $\angle A M C$ overlays the diagram.

Lemma 4

M and the circumcenters of $Q A D, Q B C, R A B$, and $R C D$ are concyclic.

Theorem 3: Simson Line of the Miquel Point

The feet of the perpendiculars of M to the four sides of the complete quadrilateral are collinear.

Theorem 4: Gauss-Bodenmiller Theorem

The circles with diameter $A C, B D$, and $R Q$ are coaxial and the orthocenters of $Q A D, Q B C$, $R A B$, and $R C D$ lie on this common axis.

Theorem 5: Newton-Gauss Line

The midpoints of the three diagonals $(A C, B D$, and $Q R)$ are collinear. Furthermore, this line is perpendicular to the Simson line of M.

Theorem 6: Brocard's Theorem

If $A B C D$ is cyclic with circumcenter O, then P is the pole of $Q R, Q$ is the pole of $R P, R$ is the pole of $P Q$, and O is the orthocenter of triangle $P Q R$.

Lemma 5

M lies on $Q R$ if and only if A, B, C, D are concyclic. Furthermore, if $A B C D$ is a cyclic quadrilateral, M is the foot of O on $Q R$ and P and M are inverses with respect to inversion about the circumcircle of $A B C D$.

Lemma 6

If $A B C D$ is cyclic with circumcenter O, M lies on the circumcircles of $A O C$ and $B O D$. Furthermore, $M O$ bisects $\angle A M C$ and $\angle B M D$.

A Problems

A1. Prove the theorems and lemmas. Some are tricky!
A2. (ToT 2015). Let $A B C D$ be a cyclic quadrilateral, K and N be the midpoints of the diagonals and P and Q be points of intersection of the extensions of the opposite sides. Prove that $\angle P K Q+$ $\angle P N Q=180$.
A3. (IMO 2013). Let $A B C$ be an acute triangle with orthocenter H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_{1} is the circumcircle of $B W N$, and let X be the point on ω_{1} such that $W X$ is a diameter of ω_{1}. Analogously, denote by ω_{2} the circumcircle of triangle $C W M$, and let Y be the point such that $W Y$ is a diameter of ω_{2}. Prove that X, Y and H are collinear.

A4. (CGMO 2006). Let O be the intersection of the diagonals of convex quadrilateral $A B C D$. The circumcircles of $\triangle O A D$ and $\triangle O B C$ meet at O and M. Line $O M$ meets the circumcircles of $\triangle O A B$ and $\triangle O C D$ at T and S respectively.
Prove that M is the midpoint of $S T$.
A5. (USAMO 2006). Let $A B C D$ be a quadrilateral, and let E and F be points on sides $A D$ and $B C$, respectively, such that $\frac{A E}{E D}=\frac{B F}{F C}$. Ray $F E$ meets rays $B A$ and $C D$ at S and T, respectively. Prove that the circumcircles of triangles $S A E, S B F, T C F$, and $T D E$ pass through a common point.

A6. The Miquel point of a circumscribed quadrilateral $A B C D$ is M, and its incenter is I. Prove that the circumcircle of $A M I$ is tangent to $I C$.

A7. (Serbia MO 2017). Let $A B C D$ be a convex and cyclic quadrilateral. Let $A D \cap B C=\{E\}$, and let M, N be points on $A D, B C$ such that $A M / M D=B N / N C$. Circle around $\triangle E M N$ intersects circle around $A B C D$ at X, Y prove that $A B, C D$ and $X Y$ are either parallel or concurrent.

A8. (USATST 2000). Let $A B C D$ be a cyclic quadrilateral and let E and F be the feet of perpendiculars from the intersection of diagonals $A C$ and $B D$ to $A B$ and $C D$, respectively. Prove that $E F$ is perpendicular to the line through the midpoints of $A D$ and $B C$.
A9. (China TST 2008). Let $A B C$ be a triangle and ℓ be a line which cuts lines $B C, C A$, and $A B$ at D, E, and F, respectively. Denote by O_{1}, O_{2}, O_{3} the circumcenters of triangles $A E F, B F D, C D E$, respectively. Prove that the orthocenter of triangle $O_{1} O_{2} O_{3}$ lies on ℓ.

B Problems

B1. (Serbia MO 2017). Let $A B C D$ be a convex cyclic quadrilateral. Let $E:=A D \cap B C$ and let M, N be points on $A D, B C$, respectively, such that $A M: M D=B N: N C$. The circumcircle of $\triangle E M N$ intersects the circumcircle of $A B C D$ at points X and Y. Prove that $A B, C D$ and $X Y$ are either parallel or concurrent.

B2. (China TST 2006). Let $A B C D$ be a convex cyclic quadrilateral with circumcenter O where O is not on any of the sides of $A B C D$. Let $P:=A C \cap B D$. The circumcentres of $\triangle O A B, \triangle O B C$, $\triangle O C D$ and $\triangle O D A$ are O_{1}, O_{2}, O_{3} and O_{4} respectively.

Prove that $O_{1} O_{3}, O_{2} O_{4}$, and $O P$ are concurrent.
B3. (ISL 2009). Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and
the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G and H.
B4. (Korea 2008). Quadrilateral $A B C D$ is inscribed in a circle with center O. Let $E:=A B \cap C D$ and let P and R be the projections of E onto $B C$ and $A D$, respectively. Let $Q:=E P \cap A D, S:=$ $E R \cap B C$. Let K be the midpoint of $Q S$. Prove that E, K, O are collinear.
B5. (CGMO 2019). Let $A B C D$ be a cyclic quadrilateral. Line $A C$ intersects $B D$ at P, and line $B C$ intersects $A D$ at Q. Let M be the midpoint of $C D$ and let the reflection of line $A B$ over line $P Q$ intersect $C D$ at K. Prove that P, Q, M, K are concyclic.
B6. (ARMO 2019). Let $A B C$ be an acute-angled triangle with $A C<B C$. A circle passes through A and B and crosses the segments $A C$ and $B C$ again at A_{1} and B_{1} respectively. The circumcircles of $A_{1} B_{1} C$ and $A B C$ meet each other at points P and C. The segments $A B_{1}$ and $A_{1} B$ intersect at S. Let Q and R be the reflections of S in the lines $C A$ and $C B$ respectively. Prove that the points P, Q, R, and C are concyclic.
B7. (Taiwan TST 2018). Given a $\triangle A B C$ with circumcircle Ω and a point P. Let D be the second intersection of $A P$ with Ω, E, F be the intersection of $B P, C P$ with $C A, A B$, respectively, M be the intersection of $\odot(A E F)$ with Ω, T be the intersection of the tangent of Ω at B, C and U be the second intersection of $T D$ with Ω. Prove that the reflection of U in $B C$ lies on $\odot(D M P)$.
B8. (USAMO 2018). In convex cyclic quadrilateral $A B C D$, we know that lines $A C$ and $B D$ intersect at E, lines $A B$ and $C D$ intersect at F, and lines $B C$ and $D A$ intersect at G. Suppose that the circumcircle of $\triangle A B E$ intersects line $C B$ at B and P, and the circumcircle of $\triangle A D E$ intersects line $C D$ at D and Q, where C, B, P, G and C, Q, D, F are collinear in that order. Prove that if lines $F P$ and $G Q$ intersect at M, then $\angle M A C=90^{\circ}$.

C Problems

C1. (China TST 2016). The diagonals of a cyclic quadrilateral $A B C D$ intersect at P, and there exist a circle Γ tangent to the extensions of $A B, B C, A D, D C$ at X, Y, Z, T respectively. Circle Ω passes through points A, B, and is externally tangent to circle Γ at S. Prove that $S P \perp S T$.
C2. (Brazil MO 2016). Let $A B C D$ be a non-cyclic, convex quadrilateral, with no parallel sides. The lines $A B$ and $C D$ meet in E. Let $M \neq E$ be the intersection of circumcircles of $A D E$ and $B C E$. The internal angle bisectors of $A B C D$ form a convex, cyclic quadrilateral with circumcenter I. The external angle bisectors of $A B C D$ form a convex, cyclic quadrilateral with circumcenter J. Show that I, J, M are collinear.
C3. (ISL 2006). Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively $\left(A_{2} \neq A, B_{2} \neq B, C_{2} \neq C\right)$. Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A, A B$ respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.

C4. (ISL 2012). Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

C5. (IMO 2011). Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b} and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C, C A$ and $A B$, respectively.

Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} and ℓ_{c} is tangent to the circle Γ.

C6. Prove that the Miquel point of a complete quadrilateral lies on the nine-point circle of the triangle determined by its three diagonals.
C7. Let I be the incenter of $\triangle A B C$. Let P be a point lie on the incircle (I) of $\triangle A B C$. Let ℓ be a line passing through P and tangent to (I). Let $\ell_{a}, \ell_{b}, \ell_{c}$ be the reflection of ℓ in $B C, C A, A B$, respectively. Let M be the Miquel point of complete quadrilateral $\left\{\ell, \ell_{a}, \ell_{b}, \ell_{c}\right\}$. Find the locus of M as P varies on (I).

