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1 Staying Comfortable

Definition. An n-variable polynomial is a polynomial composed of the sum of products over n
variables. The degree of a multivariate polynomial is the maximum degree over all terms.

For example, P (x, y, z) = x2y + 4z − 3xyz is a degree 3 multivariate polynomial (from either
x2y =⇒ 2 + 1 = 3 or xyz =⇒ 1 + 1 + 1 = 3). As another example, P (x, y) = 1 is a degree 0
multivariate polynomial.

Multivariate polynomials are often very intimidating to approach. To start off this handout, this
section will focus on ideas that work equally well for univariate polynomials and multivariate
polynomials. In fact, often we can treat a multivariate problem as a single variable one. We’ll see
how in the following terrifying-looking example:

Example 1. (USATST 2012). Consider (3-variable) polynomials

Pn(x, y, z) = (x− y)2n(y − z)2n + (y − z)2n(z − x)2n + (z − x)2n(x− y)2n

and
Qn(x, y, z) = [(x− y)2n + (y − z)2n + (z − x)2n]2n.

Determine all positive integers n such that the quotient Qn(x, y, z)/Pn(x, y, z) is a (3-variable)
polynomial with rational coefficients.

Before diving into the proof, I’d like to bring up a small piece of notation. We use R[x1, . . . , xn] to
denote the set of n-variable polynomials with coefficients in R. So for this problem, we could write
Qn(x, y, z)/Pn(x, y, z) ∈ Q[x, y, z].

Proof. We plug in x = 1 + t, y = 1, z = 0. This lets us define the single-variable polynomials

fn(t) := Pn(1 + t, 1, 0) = t2n(t+ 1)2n + t2n + (t+ 1)2n

and
gn(t) := Qn(1 + t, 1, 0) =

(
(1 + t)2n + t2n + 1

)2n
.

Since Qn(x,y,z)
Pn(x,y,z)

is a (multivariate) polynomial, gn(t)
fn(t)

must similarly be a polynomial in terms of t.

Note that t is monic and both fn and gn are integer polynomials, so the quotient gn
fn

must also be

an integer polynomial.1 As an immediate consequence, fn(k) | gn(k) for all integers k. Plugging in
k = 1 yields

22n+1 + 1 | (22n + 2)2n =⇒ 22n+1 + 1 | (22n+1 + 4)2n =⇒ 22n+1 + 1 | 32n.
1The same argument can work directly on the original multivariate polynomials too, but requires familiarity with

Gauss’s Lemma which holds for multivariate polynomials.
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By Zsigmondy’s, this is only possible when n = 1.

It now remains to show that Q1(x,y,z)
P1(x,y,z)

is indeed a rational polynomial. One quick way of seeing this
is to note that

P1(x, y, z) =
∑
cyc

((x− y)(y − z))2 =

(∑
cyc

(x− y)(y − z)

)2

=

(∑
cyc

xy −
∑
cyc

x2

)2

and

Q1(x, y, z) =

(∑
cyc

(x− y)2

)
=

(
2
∑
cyc

x2 − 2
∑
cyc

xy

)2

,

so in fact Q1(x,y,z)
P1(x,y,z)

= 4.

1.1 Problems

1. (ELMOSL 2014). It is well-known that the 3-variable polynomial a3 + b3 + c3 − 3abc can be
factored as (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca). Prove that for n > 3,

P (a1, a2, . . . , an) := an1 + an2 + · · ·+ ann − na1a2 · · · an

is irreducible over Z[a1, a2, . . . , an] (i.e. it cannot be factored as the product of two noncon-
stant polynomials with integer coefficients).

2. (IMO 2004). Find all polynomials f with real coefficients such that for all reals a, b, c such
that ab+ bc+ ca = 0 we have the following relations

f(a− b) + f(b− c) + f(c− a) = 2f(a+ b+ c).

3. (Russia 2010). A natural number n ≥ 3 is given. In terms of n, what is the smallest possible
value of k for the following statement to hold? For any choice of n points Ai = (xi, yi) on a
plane with no three collinear and any choice of n real numbers ci, there exists a polynomial
P (x, y) of degree ≤ k such that P (xi, yi) = ci for every i = 1, . . . , n.

2 Getting Messy

2.1 Equality

When working with single variable polynomials, it was a simple task to confirm equality: d + 1
intersection points sufficed. For the case of multivariate polynomials, it’s a bit trickier.

Definition. For a point p ∈ Rn, the open ball of radius r is the set Br(p) := {x ∈ Rn | |x−p| < r}.
A set U is open if for any point p ∈ U , there is some ϵ > 0 such that Bϵ(p) ⊆ R.

It may help to think of open sets as a continuous set with non-zero volume.
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Lemma 2.1.1. For multivariate polynomials P : Rn → R, Q : Rn → R and some open set
U ⊆ Rn, if P (x) = Q(x) ∀x ∈ U , then P ≡ Q.

Proof. We will use induction on n. The base case is n = 1. Then P −Q has infinitely many zeros
in U and thus it must be the zero polynomial. Now we assume that our lemma is true for n = k.
We will show it for any multivariate polynomials P,Q over k+1 variables and open set U ⊆ Rk+1.
It is not hard to see that there exists an open set Uk ⊆ Rk and an open set U1 ⊆ R such that
Uk × U1 ⊆ U . For any u ∈ U1, let Pu(x1, . . . , xk) ≡ P (x1, . . . , xk, u) and define Qu similarly. By
induction, on Pu, Qu, and Uk, we see that Pu ≡ Qu. To extend our inductive hypothesis from k to
k + 1, note that the coefficients in Pu are single-variable polynomials in terms of u, which match
in value to the coefficients in Qu, when evaluated at u. These polynomials are independent of the
choice of u ∈ U1. As we can choose infinite u, they must in fact be identical polynomials. Thus,
P ≡ Q.

Let’s do a quick example with this new knowledge.

Example 2. Find all polynomials P,Q,R such that

P

(
(x+ y) +

xy

x+ y

)
= Q(x+ y) +R

(
xy

x+ y

)
for all x, y > 0.

Proof. Let a = x+ y, b = xy
x+y . Clearly there is some open set U ⊆ {(x+ y, xy

x+y ) | x, y > 0} ⊂ R2.
Thus, we can claim that P (a+ b) = Q(a) +R(b) for all a, b ∈ R. Plugging in a = 0 gives

P (b) = Q(0) +R(b) =⇒ R(x) ≡ P (x) + c1.

Similarly, Q(x) ≡ P (x)+c2. So P (2x) = 2P (x)+C for all x ∈ R and some constant C. Comparing
leading coefficients, we see that deg(P ) ≤ 1. Checking all linear polynomials, we find that P (x) =
kx for some k ∈ R, which indeed works.

2.2 Divisibility

Complex one-variable polynomials can be factored uniquely into linear terms. When moving from
complex one-variable polynomials to integer one-variable polynomials, we still have unique factor-
ization over irreducible polynomials, but the irreducible polynomials are no longer only linear. It
turns out that the case for multivariate polynomials resembles that of integer univariate polynomi-
als.

Lemma 2.2.1. Consider R[x1, . . . , xn] for R ∈ {Z,Q,R,C,Fp}. A multivariate polynomial
P (x1, . . . , xn) ∈ R[x1, . . . , xn] is irreducible if there do not exist any non-constant A,B ∈
R[x1, . . . , xn] such that P ≡ AB. Then P can be factored uniquely2as the product of irreducible
polynomials in R.
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The non-olympiad version of this lemma is: If R is a unique factorization domain (UFD), then
R[x1, . . . , xn] is also a UFD. Unique factorization also means that GCDs and LCMs can be defined
in a manner consistent with how they work over integers. However, Bezout’s Identity does not
always hold, unlike with single-variable polynomials.

How can we tell when one polynomial is a multiple of another? Our intuition from the one-variable
case would suggest something similar to the following:

Example 3. Let f, g ∈ R[x1, . . . , xn] and define Vg to be the vanishing set of g,

Vg := {(z1, . . . , zn) ∈ Cn | g(z1, . . . , zn) = 0}.

True or false: If for any (z1, . . . , zn) ∈ Vg we have f(z1, . . . , zn) = 0, then f = gh for some
h ∈ R[x1, . . . , xn]?

Proof. False. Consider f(x, y) = x− y and g(x, y) = (x− y)2.

This is one of the questions which motivates the study of algebraic geometry, and it is not simple to
analyze more deeply.3 Even then, the inclusion of C is quite crucial. Unfortunately, most problems
only give information over a subset of Rn. Let’s look at how we can deal with these sorts of
situations.

Example 4. Let f(x, y) be a real polynomial such that f(x, x) = 0 for all x ∈ R. Prove that
f(x, y) = (x− y)g(x, y) for some g ∈ R[x, y].

Proof. We can use division with remainder where we treat x as the only variable, while y remains
formal. The reason for this is that we are trying to reduce the degree of x specifically. Then division
by remainder tells us that

f(x, y) = (x− y)Q(x, y) +R(y)

where Q ∈ R[x, y]. Furthermore, degx(x − y) > degx(R). Hence, R is purely a polynomial in
y. Now plugging in x = y into this gives 0 = R(y) for any y ∈ R. We can conclude that
f(x, y) = (x− y)g(x, y).

Note in the above that for general dividend other than x − y, it is possible that Q and R are
polynomials in x but rational functions in y. Because the leading coefficient of x in x − y is
independent of x, this does not happen.

2.3 Problems

1. (USATST 2016). Let A = A(x, y) and B = B(x, y) be two-variable polynomials with real
coefficients. Suppose that A(x, y)/B(x, y) is a polynomial in x for infinitely many values of
y, and a polynomial in y for infinitely many values of x. Prove that B divides A, meaning
there exists a third polynomial C with real coefficients such that A = B · C.

2Up to a constant factor
3This is Hilbert’s Nullstellensatz.
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2. (ELMOSL 2012). Prove that if m,n are relatively prime positive integers, xm − yn is irre-
ducible in the complex numbers. (A polynomial P (x, y) is irreducible if there do not exist
nonconstant polynomials f(x, y) and g(x, y) such that P (x, y) = f(x, y)g(x, y) for all x, y.)

3. (USAJMO 2020). Let n ≥ 2 be an integer. Let P (x1, x2, . . . , xn) be a nonconstant n-variable
polynomial with real coefficients. Assume that whenever r1, r2, . . . , rn are real numbers, at
least two of which are equal, we have P (r1, r2, . . . , rn) = 0. Prove that P (x1, x2, . . . , xn)
cannot be written as the sum of fewer than n! monomials. (A monomial is a polynomial of
the form cxd11 xd22 . . . xdnn , where c is a nonzero real number and d1, d2, . . ., dn are nonnegative
integers.)

4. (USAMO 2019). Find all polynomials P with real coefficients such that

P (x)

yz
+

P (y)

zx
+

P (z)

xy
= P (x− y) + P (y − z) + P (z − x)

holds for all nonzero real numbers x, y, z satisfying 2xyz = x+ y + z.

3 Combinatorial Nullstellensatz

Theorem. Let f ∈ K[x1, x2, . . . , xn] for K a field (think {R,Fp}) be of degree t1 + . . .+ tn and
such that the coefficient of xt11 · · ·xtnn is non-zero. Then if S1, . . . Sn are subsets of K such that
|Si| ≥ ti + 1 for all i, there exists some selection s1 ∈ S1, . . . sn ∈ Sn for which

f(s1, . . . , sn) ̸= 0.

As an immediate corollary, we get the following condition for f to be exactly zero:

Lemma 3.0.1. Let f ∈ K[x1, x2, . . . , xn] such that the degree of each xi in f is ≤ ti for all i.
Then if S1, . . . Sn are subsets of K such that |Si| ≥ ti + 1 for all i and

f(s1, . . . , sn) = 0

for all si ∈ Si, then f ≡ 0.

We can use this to prove the Cauchy-Davenport theorem, a seminal result in combinatorial number
theory.

Theorem. If p is a prime and A and B are two non-empty subsets of Zp, then

|A+B| ≥ min{p, |A|+ |B| − 1}.

Proof. If |A| + |B| > p, consider any g ∈ Zp. By Pigeonhole, there is a ∈ A so that g − a ∈ B,
so A + B = Zp and the inequality clearly holds. Otherwise, |A| + |B| ≤ p. Assume for the sake
of contradiction that |A + B| ≤ |A| + |B| − 2. Then we can construct subset C ⊆ Zp such that
A+B ⊆ C and |C| = |A|+ |B| − 2. Consider the polynomial f ∈ Zp[x, y] such that

f(x, y) :=
∏
c∈C

(x+ y − c).
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Then f(a, b) = 0 for all a ∈ A and b ∈ B. We are almost done. Choosing t1 = |A| − 1 and
t2 = |B| − 1, it remains to check that the coefficient of xt1yt2 is non-zero modulo p. But indeed, we
can see that the coefficient is

(
t1+t2
t1

)
̸≡ 0 (mod p) as t1 + t2 = |A|+ |B| − 2 < p. Therefore, we get

a contradiction by Combinatorial Nullstellensatz.

3.1 Problems

1. (Russia 2007). Two numbers are written on each vertex of a convex 100-gon. Prove that it
is possible to remove a number from each vertex so that the remaining numbers on any two
adjacent vertices are different.

2. (IMO 2007). Let n be a positive integer. Consider

S = {(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

as a set of (n+1)3−1 points in the three-dimensional space. Determine the smallest possible
number of planes, the union of which contains S but does not include (0, 0, 0).

3. (ISL 2018). Let m,n ≥ 2 be integers. Let f(x1, . . . , xn) be a polynomial with real coefficients
such that

f(x1, . . . , xn) =

⌊
x1 + · · ·+ xn

m

⌋
for every x1, . . . , xn ∈ {0, 1, . . . ,m− 1}.

Prove that the total degree of f is at least n.
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4 Extra Problems

A1. (Putnam 2005). Find a nonzero polynomial P (x, y) such that P (⌊a⌋, ⌊2a⌋) = 0 for all real
numbers a.

A2. (St. Petersburg 1998). Find all polynomials P (x, y) in two variables such that for any x and
y, P (x+ y, y − x) = P (x, y).

A3. (ISL 2020) Let A denote the set of all polynomials in three variables x, y, z with integer
coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

(x+ y + z)P (x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z)

with P,Q,R ∈ A. Find the smallest non-negative integer n such that xiyjzk ∈ B for all non-negative
integers i, j, k satisfying i+ j + k ≥ n.

B1. (Putnam 1986). Let f(x, y, z) = x2 + y2 + z2 + xyz. Let p(x, y, z), q(x, y, z), r(x, y, z) be
polynomials with real coefficients satisfying

f(p(x, y, z), q(x, y, z), r(x, y, z)) = f(x, y, z).

Prove or disprove: {p(x, y, z), q(x, y, z), r(x, y, z)} ⊂ {±x,±y,±z}.
B2. (Iran 2010). Find all two-variable polynomials p(x, y) such that for each a, b, c ∈ R:

p(ab, c2 + 1) + p(bc, a2 + 1) + p(ca, b2 + 1) = 0.

B3. (ISL 2019). A polynomial P (x, y, z) in three variables with real coefficients satisfies the iden-
tities

P (x, y, z) = P (x, y, xy − z) = P (x, zx− y, z) = P (yz − x, y, z).

Prove that there exists a polynomial F (t) in one variable such that

P (x, y, z) = F (x2 + y2 + z2 − xyz).

C1. (ISL 2012). We say that a function f : Rk → R is a metapolynomial if, for some positive
integers m and n, it can be represented in the form

f(x1, · · · , xk) = max
i=1,··· ,m

min
j=1,··· ,n

Pi,j(x1, · · · , xk),

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also a
metapolynomial.

C2. (Unknown). Prove that there exists a polynomial P (x, y) with real coefficients such that
P (x, y) ≥ 0 for all real numbers x, y, but P (x, y) cannot be written as the sum of squares of
polynomials with real coefficients.

C3. (RMM 2023). Let n ≥ 2 be an integer and let f be a 4n-variable polynomial with real
coefficients. Assume that, for any 2n points (x1, y1), . . . , (x2n, y2n) in the Cartesian plane,

f(x1, y1, . . . , x2n, y2n) = 0

if and only if the points form the vertices of a regular 2n-gon in some order, or are all equal.

Determine the smallest possible degree of f .
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