Functional Equations in Number Theory

Victor Rong

August 29, 2020

A Problems

A1. (ISL 2013). Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers m and n.
A2. (USAMO 2012). Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$(where \mathbb{Z}^{+}is the set of positive integers) such that $f(n!)=f(n)$! for all positive integers n and such that $m-n$ divides $f(m)-f(n)$ for all distinct positive integers m, n.

A3. (APMO 2019). Let \mathbb{Z}^{+}be the set of positive integers. Determine all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$ such that $a^{2}+f(a) f(b)$ is divisible by $f(a)+b$ for all positive integers a, b.
A4. (ISL 2004). Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying

$$
\left(f^{2}(m)+f(n)\right) \mid\left(m^{2}+n\right)^{2}
$$

for any two positive integers m and n.
A5. (USAMO 2019). Let \mathbb{N} be the set of positive integers. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the equation

$$
\underbrace{f(f(\ldots f}_{f(n) \text { times }}(n) \ldots))=\frac{n^{2}}{f(f(n))}
$$

for all positive integers n. Given this information, determine all possible values of $f(1000)$.
A6. (USATST 2015). Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be a function such that for any $x, y \in \mathbb{Q}$, the number $f(x+y)-f(x)-f(y)$ is an integer. Decide whether it follows that there exists a constant c such that $f(x)-c x$ is an integer for every rational number x.

B Problems

B1. (ISL 2011). Let $n \geq 1$ be an odd integer. Determine all functions f from the set of integers to itself, such that for all integers x and y the difference $f(x)-f(y)$ divides $x^{n}-y^{n}$.
B2. (IMO 2011). Let f be a function from the set of integers to the set of positive integers. Suppose that, for any two integers m and n, the difference $f(m)-f(n)$ is divisible by $f(m-n)$. Prove that, for all integers m and n with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.

B3. (ISL 2016). Denote by \mathbb{N} the set of all positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all positive integers m and n, the integer $f(m)+f(n)-m n$ is nonzero and divides $m f(m)+n f(n)$.

B4. (USATST 2019). Let $\mathbb{Z} / n \mathbb{Z}$ denote the set of integers considered modulo n (hence $\mathbb{Z} / n \mathbb{Z}$ has n elements). Find all positive integers n for which there exists a bijective function $g: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$, such that the 101 functions

$$
g(x), \quad g(x)+x, \quad g(x)+2 x, \quad \ldots, \quad g(x)+100 x
$$

are all bijections on $\mathbb{Z} / n \mathbb{Z}$.
B5. (ISL 2008). For every $n \in \mathbb{N}$ let $d(n)$ denote the number of (positive) divisors of n. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:

- $d(f(x))=x$ for all $x \in \mathbb{N}$.
- $f(x y)$ divides $(x-1) y^{x y-1} f(x)$ for all $x, y \in \mathbb{N}$.

B6. (ISL 2007). Find all surjective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number $f(m+n)$ is divisible by p if and only if $f(m)+f(n)$ is divisible by p.

C Problems

C1. (IMO 1998). Determine the least possible value of $f(1998)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function such that for all $m, n \in \mathbb{N}$,

$$
f\left(n^{2} f(m)\right)=m(f(n))^{2}
$$

C2. (IMO 2010). Find all functions $g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(g(m)+n)(g(n)+m)
$$

is a perfect square for all $m, n \in \mathbb{N}$.
C3. (ISL 2018). Let $f:\{1,2,3, \ldots\} \rightarrow\{2,3, \ldots\}$ be a function such that $f(m+n) \mid f(m)+f(n)$ for all pairs m, n of positive integers. Prove that there exists a positive integer $c>1$ which divides all values of f.
C4. (HMIC 2019). Let $p=2017$ be a prime and \mathbb{F}_{p} be the integers modulo p. A function $f: \mathbb{Z} \rightarrow \mathbb{F}_{p}$ is called good if there is $\alpha \in \mathbb{F}_{p}$ with $\alpha \not \equiv 0(\bmod p)$ such that

$$
f(x) f(y)=f(x+y)+\alpha^{y} f(x-y) \quad(\bmod p)
$$

for all $x, y \in \mathbb{Z}$. How many good functions are there that are periodic with minimal period 2016 ?
C5. (ISL 2015). Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ is called k-good if $\operatorname{gcd}(f(m)+n, f(n)+m) \leq k$ for all $m \neq n$. Find all k such that there exists a k-good function.
C6. (ISL 2017). Let p be an odd prime number and $\mathbb{Z}_{>0}$ be the set of positive integers. Suppose that a function $f: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \rightarrow\{0,1\}$ satisfies the following properties:

- $f(1,1)=0$.
- $f(a, b)+f(b, a)=1$ for any pair of relatively prime positive integers (a, b) not both equal to 1;
- $f(a+b, b)=f(a, b)$ for any pair of relatively prime positive integers (a, b).

Prove that

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right) \geqslant \sqrt{2 p}-2
$$

