Projective Geometry

Victor Rong

July 6, 2021

Introduction

Projective geometry deals with elements of geometry which are preserved under projections such as points, lines, intersections, tangencies, conics. There are a number of useful concepts and tools deriving from this area.

The projective plane extends the usual Euclidean plane to resolve parallel lines. While in Euclidean geometry, two distinct lines do not intersect if the are parallel and at one point otherwise, in the projective plane, two parallel lines meet at the point at infinity. This is often denoted as P_{∞}. Note that different families of parallel lines meet at different points at infinity and these points constitute the line at infinity. This extension allows us to handle special cases well.

Projective geometry revolves around intersections and taking perspectives is a common way in which we can relate groups of intersections.

The cross-ratio of four collinear points A, B, X, Y is denoted and defined as

$$
(A, B ; X, Y):=\frac{X A}{X B} \div \frac{Y A}{Y B}
$$

where the lengths are directed. Furthermore, we can define the crossratio of four concurrent lines $P A, P B, P X, P Y$ as

$$
P(A, B ; X, Y):=\frac{\sin \angle X P A}{\sin \angle X P B} \div \frac{\sin \angle Y P A}{\sin \angle Y P B} .
$$

Theorem 1: Cross-ratio Under Perspectivity

For any four collinear points A, B, X, Y and point P not on this line, we have

$$
P(A, B ; X, Y)=(A, B ; X, Y)
$$

As an immediate corollary, we have

$$
(A, B ; X, Y) \stackrel{P}{=}\left(A^{\prime}, B^{\prime} ; X^{\prime}, Y^{\prime}\right)
$$

for $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$ defined as in the left diagram.
We can also extend this notion of cross-ratios to four concyclic points. We can (in a slight abuse of notation) write $(A, B ; X, Y):=\frac{X A}{X B} \div \frac{Y A}{Y B}$ for concyclic points A, B, X, Y. Then we have the following:

Theorem 2: Cross-ratio Under Perspectivity

For any four concyclic points A, B, X, Y and point P on this same circle, we have

$$
P(A, B ; X, Y)=(A, B ; X, Y)
$$

Again, we have that

$$
(A, B ; X, Y) \stackrel{P}{=}\left(A^{\prime}, B^{\prime} ; X^{\prime}, Y^{\prime}\right)
$$

for $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$ defined as in the right diagram. So cross-ratios are preserved under perspectivity.

Harmonic Stuff

Of particular interest are when the cross-ratio is equal to -1 . In this case, we call the four points a harmonic bundle. Note that if $(A, B ; X, Y)=-1$, then $(A, B ; Y, X)=-1)$ and given A, B, and X, we can uniquely define Y to complete the harmonic bundle. For example, let A and B be points with M their midpoint. Then $\left(A, B ; M, P_{\infty}\right)$ is a harmonic bundle. Harmonic bundles arise naturally from cevians and complete quadrilaterals.

Lemma 1: Complete Quadrilaterals Induce Harmonic Bundles
There are a lot of harmonic bundles in the above diagram.

One particularly useful harmonic bundle is the feet of the angle bisectors.

Lemma 2: Feet of Angle Bisectors Form Harmonic Bundles

et X, A, Y, and B be collinear points in that order and let C be any point not on this line. Then any two of the following conditions imply the third:
(i) $(A, B ; X, Y)$ is a harmonic bundle.
(ii) $\angle X C Y=90^{\circ}$.
(iii) $C Y$ bisects $\angle A C B$.

Finally, if A, B, X, Y is cyclic and $(A, B ; X, Y)=-1$, then we say that $A X B Y$ is a harmonic quadrilateral. These are closely related to the symmedian configuration, as the next theorem shows.

Lemma 3: Symmedians Form Harmonic Quadrilaterals

Let $A B C$ be a triangle and Γ its circumcircle. Let D be the point on arc $B C$ of Γ not containing A such that $A B D C$ is harmonic. Let M be the midpoint of $B C$ and let the tangents to Γ at B and C intersect at X. Then
(i) $A M$ and $A D$ are isogonal lines with respect to $\angle B A C$.
(ii) D is the second intersection of $A X$ with Γ.

Poles and Polars

Let Ω be a circle with center O and let P be a point. A line is drawn through P and intersects Ω twice at points A and B. Point Q is chosen to be the point such that P, Q, A, B is a harmonic bundle. Then as the line through P varies, the Q moves along a locus ℓ known as the polar of P (and conversely, P is the pole of ℓ).

Theorem 3: Pole and Polar

The polar of P, ℓ, is a line perpendicular to $O P$ which goes through the inverse of P with respect to Ω.

Theorem 4: La Hire's Theorem

A point X lies on the polar of Y if and only if Y lies on the polar of X.

Theorem 5: Brocard's Theorem

Let $A B C D$ be a cyclic quadrilateral with circumcenter O. Let $P:=A C \cap B D, Q:=A B \cap C D$, and $R:=B C \cap D A$. Then P is the pole of $Q R, Q$ is the pole of $R P, R$ is the pole of $P Q$, and O is the orthocenter of triangle $P Q R$.

Pascal, Pappus, and Brianchon, Oh My!

Theorem 6: Pascal's Theorem
Let points A, B, C, D, E, F lie on a circle. Let $P:=A B \cap D E, Q:=B C \cap E F, R:=C D \cap F A$. Then P, Q, R are collinear.

Theorem 7: Pappus's Theorem

Let points A, B, C, D, E, F such that A, C, E are collinear and B, D, F are collinear. Let $P:=A B \cap D E, Q:=B C \cap E F, R:=C D \cap F A$. Then P, Q, R are collinear.

Theorem 8: Brianchon's Theorem

Let $A B C D E F$ be a hexagon circumscribed about a circle. Then $A D, B E$, and $C F$ concur.

A Problems

A1. Prove all the lemmas and theorems.
A2. Let $A B C$ be a triangle and let D, E, and F be points on sides $B C, C A$, and $A B$ respectively. Prove that $B D=D C$ if and only if $E F \| B C$.
A3. Let $A B C$ be a triangle with incenter I and A-excenter I_{A}. Let the internal angle bisector of $\angle B A C$ intersect $B C$ at D. Prove that A, D, I, I_{A} forms a harmonic bundle.
A4. (CMO 1994). Let $A B C$ be an acute triangle. Let D be on $B C$ with $A D \perp B C$ and let H be any point on segment $A D$. Lines $B H$ and $C H$, when extended, intersect $A C$ and $A B$ at E and F respectively. Prove that $\angle E D H=\angle F D H$.
A5. Points A, X, B, Y lie on a line in that order and $(A, B ; X, Y)=-1$. Let M be the midpoint of $A B$. Show that $M X \cdot M Y=\left(\frac{1}{2} A B\right)^{2}$ and $Y X \cdot Y M=Y A \cdot Y B$.
A6. (USAJMO 2011). Points A, B, C, D, E lie on a circle ω and point P lies outside the circle. The given points are such that (i) lines $P B$ and $P D$ are tangent to ω, (ii) P, A, C are collinear, and (iii) $D E \| A C$. Prove that $B E$ bisects $A C$.

A7. (USAJMO 2015). Let $A B C D$ be a cyclic quadrilateral. Prove that there exists a point X on segment $\overline{B D}$ such that $\angle B A C=\angle X A D$ and $\angle B C A=\angle X C D$ if and only if there exists a point Y on segment $\overline{A C}$ such that $\angle C B D=\angle Y B A$ and $\angle C D B=\angle Y D A$.
A8. (Iran MO 2015). In quadrilateral $A B C D, A C$ is the bisector of $\angle A$ and $\angle A D C=\angle A C B$. Let X and Y be the feet of perpendiculars from A to $B C$ and $C D$, respectively. Prove that the orthocenter of triangle $A X Y$ is on $B D$.

B Problems

B1. (Taiwan TST 2015). Let O be the circumcircle of triangle $A B C$. Two circles O_{1}, O_{2} are tangent to each of the circle O and the rays $\overrightarrow{A B}, \overrightarrow{A C}$, with O_{1} interior to O, O_{2} exterior to O. The common tangent of O, O_{1} and the common tangent of O, O_{2} intersect at the point X. Let M be the midpoint of the arc $B C$ (not containing the point A) on the circle O, and the segment $\overline{A A^{\prime}}$ be the diameter of O. Prove that X, M, and A^{\prime} are collinear.
B2. (Iran TST 2012). Let $A B C$ be an acute triangle with circumcircle ω. Let D be the midpoint of arc $B A C$ and I be the incenter of triangle $A B C$. Let $D I$ intersect $B C$ in E and ω for second time in F. Let P be a point on line $A F$ such that $P E$ is parallel to $A I$. Prove that $P E$ bisects $\angle B P C$.

B3. (APMO 2008). Let Γ be the circumcircle of a triangle $A B C$. A circle passing through points A and C meets the sides $B C$ and $B A$ at D and E, respectively. The lines $A D$ and $C E$ meet Γ again at G and H, respectively. The tangent lines of Γ at A and C meet the line $D E$ at L and M, respectively. Prove that the lines $L H$ and $M G$ meet at Γ.
B4. (Iran TST 2008). Suppose that I is incenter of triangle $A B C$ and l^{\prime} is a line tangent to the incircle. Let l be another line such that intersects $A B, A C, B C$ respectively at $C^{\prime}, B^{\prime}, A^{\prime}$. We draw a tangent from A^{\prime} to the incircle other than $B C$, and this line intersects with l^{\prime} at $A_{1} . B_{1}, C_{1}$ are similarly defined. Prove that $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

B5. (APMO 2013). Let $A B C D$ be a quadrilateral inscribed in a circle ω, and let P be a point on
the extension of $A C$ such that $P B$ and $P D$ are tangent to ω. The tangent at C intersects $P D$ at Q and the line $A D$ at R. Let E be the second point of intersection between $A Q$ and ω. Prove that B, E, R are collinear.

B6. (IMO 2010). Given a triangle $A B C$, with I as its incenter and Γ as its circumcircle, $A I$ intersects Γ again at D. Let E be a point on the arc $B D C$, and F a point on the segment $B C$, such that $\angle B A F=\angle C A E<\frac{1}{2} \angle B A C$. If G is the midpoint of $I F$, prove that the meeting point of the lines $E I$ and $D G$ lies on Γ.

B7. (Iran MO 2017). Let $A B C$ be an acute-angle triangle. Let M be the midpoint of $B C$ and H be the orthocenter of $A B C$. Let $F:=B H \cap A C$ and $E:=C H \cap A B$. Suppose that X is a point on $E F$ such that $\angle X M H=\angle H A M$ and A, X are in the distinct side of $M H$. Prove that $A H$ bisects $M X$.

B8. (Taiwan TST 2020). Let point H be the orthocenter of a scalene triangle $A B C$. Line $A H$ intersects with the circumcircle Ω of triangle $A B C$ again at point P. Line $B H, C H$ meets with $A C, A B$ at point E and F, respectively. Let $P E, P F$ meet Ω again at point Q, R, respectively. Point Y lies on Ω so that lines $A Y, Q R$ and $E F$ are concurrent. Prove that $P Y$ bisects $E F$.

B9. (USA TST 2013). Let $A B C$ be an acute triangle. Circle ω_{1}, with diameter $A C$, intersects side $B C$ at F (other than C). Circle ω_{2}, with diameter $B C$, intersects side $A C$ at E (other than $C)$. Ray $A F$ intersects ω_{2} at K and M with $A K<A M$. Ray $B E$ intersects ω_{1} at L and N with $B L<B N$. Prove that lines $A B, M L, N K$ are concurrent.

B10. (ISL 2016). Let $A B C$ be a triangle with circumcircle Γ and incenter I and let M be the midpoint of $\overline{B C}$. The points D, E, F are selected on sides $\overline{B C}, \overline{C A}, \overline{A B}$ such that $\overline{I D} \perp \overline{B C}$, $\overline{I E} \perp \overline{A I}$, and $\overline{I F} \perp \overline{A I}$. Suppose that the circumcircle of $\triangle A E F$ intersects Γ at a point X other than A. Prove that lines $X D$ and $A M$ meet on Γ.

B11. (USA TSTST 2020). Let $A B C$ be a scalene triangle with incenter I. The incircle of $A B C$ touches $\overline{B C}, \overline{C A}, \overline{A B}$ at points D, E, F, respectively. Let P be the foot of the altitude from D to $\overline{E F}$, and let M be the midpoint of $\overline{B C}$. The rays $A P$ and $I P$ intersect the circumcircle of triangle $A B C$ again at points G and Q, respectively. Show that the incenter of triangle $G Q M$ coincides with D.

C Problems

C1. (Iran TST 2009). In triangle $A B C, D, E$ and F are the points of tangency of incircle with the center of I to $B C, C A$ and $A B$ respectively. Let M be the foot of the perpendicular from D to $E F$. P is on $D M$ such that $D P=M P$. If H is the orthocenter of $B I C$, prove that $P H$ bisects $E F$.

C2. (USA TST 2013). Let $A B C$ be a scalene triangle with $\angle B C A=90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment $C D$. Let K be the point on the segment $A X$ such that $B K=B C$. Similarly, let L be the point on the segment $B X$ such that $A L=A C$. The circumcircle of triangle $D K L$ intersects segment $A B$ at a second point T (other than $D)$. Prove that $\angle A C T=\angle B C T$.

C3. (ISL 2016). Let $A B C D$ be a convex quadrilateral with $\angle A B C=\angle A D C<90^{\circ}$. The internal angle bisectors of $\angle A B C$ and $\angle A D C$ meet $A C$ at E and F respectively, and meet each other at point P. Let M be the midpoint of $A C$ and let ω be the circumcircle of triangle $B P D$. Segments
$B M$ and $D M$ intersect ω again at X and Y respectively. Denote by Q the intersection point of lines $X E$ and $Y F$. Prove that $P Q \perp A C$.
C4. (USA TST 2017). Let $A B C$ be a triangle with altitude $\overline{A E}$. The A-excircle touches $\overline{B C}$ at D, and intersects the circumcircle at two points F and G. Prove that one can select points V and N on lines $D G$ and $D F$ such that quadrilateral $E V A N$ is a rhombus.
C5. (ISL 2019). Let I be the incentre of acute-angled triangle $A B C$. Let the incircle meet $B C, C A$, and $A B$ at D, E, and F, respectively. Let line $E F$ intersect the circumcircle of the triangle at P and Q, such that F lies between E and P. Prove that $\angle D P A+\angle A Q D=\angle Q I P$.
C6. (IMO 2019). Let I be the incentre of acute triangle $A B C$ with $A B \neq A C$. The incircle ω of $A B C$ is tangent to sides $B C, C A$, and $A B$ at D, E, and F, respectively. The line through D perpendicular to $E F$ meets ω at R. Line $A R$ meets ω again at P. The circumcircles of triangle $P C E$ and $P B F$ meet again at Q.
Prove that lines $D I$ and $P Q$ meet on the line through A perpendicular to $A I$.
C7. (Iran TST 2020). Given a triangle $A B C$ with circumcircle Γ. Points E and F are the foot of angle bisectors of B and C, I is incenter and K is the intersection of $A I$ and $E F$. Suppose that T be the midpoint of arc $B A C$. Circle Γ intersects the A-median and circumcircle of $A E F$ for the second time at X and S. Let S^{\prime} be the reflection of S across $A I$ and J be the second intersection of circumcircle of $A S^{\prime} K$ and $A X$. Prove that quadrilateral $T J I X$ is cyclic.

