Ratio Chasing

Victor Rong

January 4, 2021

1 Concurrency and Collinearity

In a triangle $\triangle A B C$, a cevian is a line segment connecting one of the vertices A, B, or C to a point lying on the side opposite to the vertex. Ceva's Theorem relates the concurrency of three such cevians to length ratios.

Theorem 1: Ceva's Theorem

Given $\triangle A B C$, let X, Y, and Z be points on lines $B C, C A$, and $A B$ respectively. Then $A X$, $B Y$, and $C Z$ are concurrent if and only if

$$
\frac{B X}{X C} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=1 .
$$

Before proving this theorem, let us consider the following lemma:

Lemma 1

Let ℓ be a line and U, V points in the plane. Let S and T be points on ℓ. Line $U V$ intersects ℓ at point W. Then

$$
\frac{[\triangle U S T]}{[\triangle V S T]}=\frac{d(U, \ell)}{d(V, \ell)}=\frac{U W}{V W} .
$$

Proof. We will first show that if $A X, B Y$, and $C Z$ concur, the given equation is true. Let P be the point of intersection of the three lines. From Lemma $1, \frac{[\triangle P A B]}{[\triangle P C A]}=\frac{B X}{X C}$. Similarly, $\frac{[\triangle P B C]}{[\triangle P A B]}=\frac{C Y}{Y A}$ and $\frac{[\triangle P C A]}{[\triangle P B C]}=\frac{A Z}{Z B}$. Multiplying the three inequalities gives

$$
\frac{B X}{X C} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=\frac{[\triangle P A B]}{[\triangle P C A]} \cdot \frac{[\triangle P B C]}{[\triangle P A B]} \cdot \frac{[\triangle P C A]}{[\triangle P B C]}=1
$$

To prove the other direction, let P be the intersection of $B Y$ and $C Z$. Instead of directly proving that P lies on $A X$, we will define X^{\prime} to be the intersection of $A P$ and $B C$ and show that $X=X^{\prime}$. From the direction we have shown,

$$
\frac{B X^{\prime}}{X^{\prime} C} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=1
$$

But we also have the assumption that

$$
\frac{B X}{X C} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=1
$$

Dividing the two equations gives

$$
\frac{B X^{\prime}}{X^{\prime} C}=\frac{B X}{X C}
$$

It is easy to see that this implies $X=X^{\prime}$ and we are done.

Theorem 2: Menelaus's Theorem

Given $\triangle A B C$, let X, Y, and Z be points on lines $B C, C A$, and $A B$ respectively. Then X, Y, and Z are collinear if and only if

$$
\frac{B X}{X C} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=-1
$$

The two theorems are almost the same save for the -1 in the right-hand side of Menelaus's Theorem and collinearity rather than concurrency. The negative sign arises from directed lengths. It is generally unnecessary to pay much attention when using directed lengths; they tend to work out without much trouble.

2 Angles

The Law of Sines provides a way of moving between ratios involving lengths and ratios involving angles.

Theorem 3: Extended Law of Sines

Let $\triangle A B C$ be a triangle with circumradius R. Then

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$

Theorem 4: Ratio Lemma

Given $\triangle A B C$, let X be a point on $B C$. Then

$$
\frac{B X}{X C}=\frac{\sin \angle B A X}{\sin \angle X A C} \cdot \frac{A B}{A C} .
$$

Proof. Applying the Law of Sines to $\triangle A B X$ and $\triangle A C X$, we get

$$
\frac{\sin \angle B A X}{B X}=\frac{\sin \angle B X A}{A B}
$$

and

$$
\frac{\sin \angle X A C}{X C}=\frac{\sin \angle C X A}{A C} .
$$

Dividing these two equations and rearranging gives

$$
\frac{\sin \angle B X A}{\sin \angle C X A} \cdot \frac{B X}{X C}=\frac{\sin \angle B A X}{\sin \angle X A C} \cdot \frac{A B}{A C} .
$$

Since $\angle B X A$ and $\angle C X A$ are supplementary, $\sin \angle B X A=\sin \angle C X A$. So we have

$$
\frac{B X}{X C}=\frac{\sin \angle B A X}{\sin \angle X A C} \cdot \frac{A B}{A C}
$$

as expected.

We can apply the Ratio Lemma to Ceva's Theorem and Menelaus's Theorem to obtain new formulations:

Theorem 5: Trigonometric Form of Ceva's Theorem

Given $\triangle A B C$, let X, Y, and Z be points on lines $B C, C A$, and $A B$ respectively. Then $A X$, $B Y$, and $C Z$ are concurrent if and only if

$$
\frac{\sin \angle B A X}{\sin \angle X A C} \cdot \frac{\sin \angle C B Y}{\sin \angle Y B A} \cdot \frac{\sin \angle A C Z}{\sin \angle Z C B}=1 .
$$

Theorem 6: Trigonometric Form of Menelaus's Theorem

Given $\triangle A B C$, let X, Y, and Z be points on lines $B C, C A$, and $A B$ respectively. Then X, Y, and Z are collinear if and only if

$$
\frac{\sin \angle B A X}{\sin \angle X A C} \cdot \frac{\sin \angle C B Y}{\sin \angle Y B A} \cdot \frac{\sin \angle A C Z}{\sin \angle Z C B}=-1 .
$$

When working with these forms, we often obtain results about the ratio of sines of angles. The following lemma allows these results to cleanly translate into results about the angles themselves.

Lemma 2

Let $x_{1}, y_{1}, x_{2}, y_{2}$ be real numbers in $[0, \pi)$ such that $x_{1}+y_{1}=x_{2}+y_{2}$, $x_{1}+y_{1}<\pi$ and $\frac{\sin x_{1}}{\sin y_{1}}=\frac{\sin x_{2}}{\sin y_{2}}$. Then $x_{1}=x_{2}, y_{1}=y_{2}$.

Note the bounds on $x_{1}+y_{1}$; the lemma is not true when the angles sum to π and needs alterations when the angles sum to greater than π.

3 Isogonal Lines

Consider a point P and rays $P U$ and $P V$. Two lines ℓ_{1} and ℓ_{2} passing through P are called isogonal lines if ℓ_{1} and ℓ_{2} are reflections over the bisector of $\angle U P V$. In other words, $\angle\left(\ell_{1}, P U\right)=\angle\left(\ell_{2}, P V\right)$ and $\angle\left(\ell_{1}, P V\right)=\angle\left(\ell_{2}, P U\right)$ (the two are equivalent).

Lemma 3: Existence of Isogonal Conjugate

Let $\triangle A B C$ be a triangle and P be some point. Then the isogonal of $A P$ with respect to $\angle C A B$, the isogonal of $B P$ with respect to $\angle A B C$, and the isogonal of $C P$ with respect to $\angle B C A$ intersect at a point. This point is called the isogonal conjugate of P.

As an aside, the isogonal conjugate is what you get by flipping all the angles in trigonometric Ceva's. If you instead flipped all the side lengths, that is what's called the isotomic conjugate.

Lemma 4

Let $\triangle A B C$ be a triangle with points D and E on $B C$. Prove that $A D$ and $A E$ are isogonal with respect to $\angle C A B$ if and only if

$$
\frac{B D}{D C} \cdot \frac{B E}{E C}=\left(\frac{A B}{A C}\right)^{2}
$$

Lemma 5: Isogonal Line Lemma

Given triangle $A B C$, let P and Q be points such that lines $A P$ and $A Q$ are isogonal lines with respect to $\angle B A C$. Define X as the intersection of lines $B P$ and $C Q$ and Y as the intersection of lines $B Q$ and $C P$. Then $A X$ and $A Y$ are isogonal lines with respect to $\angle B A C$.

Proof. We first apply the Ratio Lemma four times: on $\triangle A Y Q$ with point B, on $\triangle A Y P$ with point C, on $\triangle A X Q$ with point C, and on $\triangle A X P$ with point B. These give

$$
\begin{aligned}
& \frac{A Y}{A Q} \cdot \frac{\sin \angle Y A B}{\sin \angle B A Q}=\frac{Y B}{B Q}=\frac{[Y B C]}{[Q B C]}, \\
& \frac{A Y}{A P} \cdot \frac{\sin \angle Y A C}{\sin \angle C A P}=\frac{Y C}{C P}=\frac{[Y B C]}{[P B C]}, \\
& \frac{A X}{A Q} \cdot \frac{\sin \angle X A C}{\sin \angle C A Q}=\frac{X C}{C Q}=\frac{[X B C]}{[Q B C]}, \\
& \frac{A X}{A P} \cdot \frac{\sin \angle X A B}{\sin \angle B A P}=\frac{X B}{B P}=\frac{[X B C]}{[P B C]} .
\end{aligned}
$$

Now consider the product of the first and fourth equation, and the product of the second and third equations. These share many terms and we can divide the two, leaving

$$
\frac{\sin \angle Y A B}{\sin \angle B A Q} \cdot \frac{\sin \angle X A B}{\sin \angle B A P}=\frac{\sin \angle Y A C}{\sin \angle C A P} \cdot \frac{\sin \angle X A C}{\sin \angle C A Q} .
$$

We can now use the isogonality condition on $A P$ and $A Q$ to cancel out the denominators. Rearranging, we have

$$
\frac{\sin \angle Y A B}{\sin \angle Y A C}=\frac{\sin \angle X A C}{\sin \angle X A B} .
$$

By Lemma 2, this implies that $\angle Y A B=\angle X A C$ and we are done.

4 Examples

Example 1: Cevian Nest Theorem

Let $A X, B Y$, and $C Z$ be concurrent cevians of $\triangle A B C$. Let $X D, Y E$, and $Z F$ be concurrent cevians in $\triangle X Y Z$. Prove that $A D, B E$, and $C F$ are concurrent.

Proof. By the Ratio Lemma on $\triangle A Y Z$ with cevian $A D$,

$$
\frac{Y D}{D Z}=\frac{\sin \angle Y A D}{\sin \angle D A Z} \cdot \frac{A Y}{A Z} .
$$

Similarly,

$$
\frac{Z E}{E X}=\frac{\sin \angle Z B E}{\sin \angle E B X} \cdot \frac{B Z}{B X} \text { and } \frac{X F}{F Y}=\frac{\sin \angle X C F}{\sin \angle F C Y} \cdot \frac{C X}{C Y}
$$

Multiplying the three equations yields

$$
\left(\frac{Y D}{D Z} \cdot \frac{Z E}{E X} \cdot \frac{X F}{F Y}\right)=\left(\frac{\sin \angle Y A D}{\sin \angle D A Z} \cdot \frac{\sin \angle Z B E}{\sin \angle E B X} \cdot \frac{\sin \angle X C F}{\sin \angle F C Y}\right) \cdot\left(\frac{A Y}{A Z} \cdot \frac{B Z}{B X} \cdot \frac{C X}{C Y}\right)
$$

But from Ceva's Theorem on $\triangle X Y Z$ with points D, E, F and on $\triangle A B C$ with points X, Y, Z, we know that

$$
\frac{Y D}{D Z} \cdot \frac{Z E}{E X} \cdot \frac{X F}{F Y}=1 \text { and } \frac{A Y}{A Z} \cdot \frac{B Z}{B X} \cdot \frac{C X}{C Y}=\left(\frac{B X}{X C} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}\right)^{-1}=1
$$

Thus,

$$
\frac{\sin \angle C A D}{\sin \angle D A B} \cdot \frac{\sin \angle A B E}{\sin \angle E B C} \cdot \frac{\sin \angle B C F}{\sin \angle F C A}=\frac{\sin \angle Y A D}{\sin \angle D A Z} \cdot \frac{\sin \angle Z B E}{\sin \angle E B X} \cdot \frac{\sin \angle X C F}{\sin \angle F C Y}=1
$$

and we are done.

Example 2

Let $\triangle A B C$ be a triangle with incenter I and contact triangle $\triangle D E F$. If M is the midpoint of $B C$, prove that $E F, A M$ and $D I$ concur.

Proof. Let X_{1} be the intersection of $A M$ and $E F$ and let X_{2} be the intersection of $D I$ and $E F$. We wish to prove that $X_{1}=X_{2}$. It suffices to show $\frac{E X_{1}}{X_{1} F}=\frac{E X_{2}}{X_{2} F}$.

Let us first compute $\frac{E X_{1}}{X_{1} F}$. From the Ratio Lemma on $\triangle A E F$ and on $\triangle A C B$ with cevian $A X_{1}$ and $A M$ respectively, we obtain

$$
\frac{E X_{1}}{X_{1} F}=\frac{\sin \angle E A X_{1}}{\sin \angle X_{1} A F} \cdot \frac{A E}{A F} \text { and } \frac{C M}{M B}=\frac{\sin \angle C A M}{\sin \angle M A B} \cdot \frac{A C}{A B} .
$$

Dividing the two equations and using $\angle E A X_{1}=\angle C A M, \angle X_{1} A F=\angle M A B$ gives

$$
\begin{aligned}
\frac{E X_{1}}{X_{1} F} \cdot \frac{M B}{C M} & =\frac{A E}{A F} \cdot \frac{A B}{A C} \\
\frac{E X_{1}}{X_{1} F} & =\frac{A B}{A C} .
\end{aligned}
$$

To compute $\frac{E X_{2}}{X_{2} F}$, we will apply the Ratio Lemma to $\triangle I E F$ with cevian $I X_{2}$. From angle chasing, we can see that $\angle E I X_{2}=\angle B C A$ and $\angle X_{2} I F=\angle A B C$.

$$
\begin{aligned}
\frac{E X_{2}}{X_{2} F} & =\frac{\sin \angle E I X_{2}}{\sin \angle X_{2} I F} \cdot \frac{I E}{I F} \\
& =\frac{\sin \angle E I X_{2}}{\sin \angle X_{2} I F} \\
& =\frac{\sin \angle B C A}{\sin \angle A B C} \\
& =\frac{A B}{A C} .
\end{aligned}
$$

Thus, $X_{1}=X_{2}$ and $E F, A M$, and $D I$ concur.

Example 3: Pascal's Theorem
Let points A, B, C, D, E, F lie on a circle. Let $P:=A B \cap D E, Q:=B C \cap E F, R:=C D \cap F A$. Prove that P, Q, R are collinear.

Proof. Define X to be the intersection of $D E$ and $A F$. By Menelaus's Theorem on $\triangle E F X$, it suffices to show

$$
\frac{E Q}{Q F} \cdot \frac{F R}{R X} \cdot \frac{X P}{P E}=-1 .
$$

We can compute $\frac{E Q}{Q F}$ by using the Ratio Lemma on $\triangle C E F$. In particular, we get

$$
\frac{E Q}{Q F}=\frac{C E}{C F} \cdot \frac{\sin \angle C E B}{\sin \angle B C F}=\frac{C E}{C F} \cdot \frac{E B}{B F} .
$$

Similarly, by Ratio Lemma on $\triangle D F X$ we get $\frac{F R}{R X}=\frac{D F}{D X} \cdot \frac{F C}{C E}$ and by Ratio Lemma on $\triangle A X E$ we get $\frac{A X}{A E} \cdot \frac{F B}{B E}$. Putting this all together, it suffices to show

$$
\frac{C E}{C F} \cdot \frac{E B}{B F} \cdot \frac{D F}{D X} \cdot \frac{F C}{C E} \cdot \frac{A X}{A E} \cdot \frac{F B}{B E}=-1 .
$$

Most of these terms cancel out leaving us with

$$
\frac{D F}{D X} \cdot \frac{A X}{A E} \stackrel{?}{=} 1
$$

which is true as $\triangle D F X \sim \triangle A E X$.

5 Problems

A Problems

A1. (Gergonne point) Let $\triangle D E F$ be the contact triangle of $\triangle A B C$. Prove that $A D, B E$, and $C F$ are concurrent.

A2. Let $A D, B E$, and $C F$ be cevians in $\triangle A B C$ which all intersect at a point P. Prove that

$$
\frac{P D}{A D}+\frac{P E}{B E}+\frac{P F}{C F}=1
$$

A3. Let M, E, and F be points on $B C, C A$, and $A B$. Prove that $E F \| B C$ if and only if M is the midpoint of $B C$.

A4. Let $\triangle A B C$ be a triangle and let α be some fixed angle in $[0, \pi)$. Let A_{1} be the point such that $\angle B A_{1} C=\alpha, A_{1} B=A_{1} C$, and A_{1} is on the opposite of $B C$ as A. Define B_{1} and C_{1} similarly. Prove that $A A_{1}, B B_{1}$, and $C C_{1}$ are concurrent.

A5. Let $A D, B E$, and $C F$ be cevians in $\triangle A B C$ which are concurrent. The circumcircle of $\triangle D E F$ intersects $B C, C A$, and $A B$ again at D^{\prime}, E^{\prime} and F^{\prime} respectively. Prove that $A D^{\prime}, B E^{\prime}$, and $C F^{\prime}$ are concurrent.
A6. (CMO 2008) $A B C D$ is a convex quadrilateral for which $A B$ is the longest side. Points M and N are located on sides $A B$ and $B C$ respectively, so that each of the segments $A N$ and $C M$ divides the quadrilateral into two parts of equal area. Prove that the segment $M N$ bisects the diagonal $B D$.

A7. (Euclid 2012) Let $A B C D$ be a convex quadrilateral and let M and N be points on segments $A B$ and $C D$ respectively such that $\frac{A M}{A B}=\frac{C N}{C D}$. Line segments $A N$ and $M D$ intersect at point P and $B N$ and $C M$ intersect at point Q. Prove that $[P M Q N]=[B Q C]+[A P D]$.
A8. (Lemoine axis) Let Γ be the circumcircle of $\triangle A B C$. The tangents to Γ at A, B, and C intersect $B C, C A$, and $A B$ at points D, E, and F respectively. Prove that D, E, and F are collinear.

A9. (CMOQR 2013) In triangle $A B C, \angle C A B=90^{\circ}$ and $\angle B C A=70^{\circ}$. Let F be the point on $A B$ such that $\angle A C F=30^{\circ}$ and let E be the point on $C A$ such that $\angle C F E=20^{\circ}$. Prove that $B E$ bisects $\angle A B C$.
A10. (2016 AIME) Triangle $A B C$ is inscribed in circle ω. Points P and Q are on side $\overline{A B}$ with $A P<A Q$. Rays $C P$ and $C Q$ meet ω again at S and T (other than C), respectively. If $A P=4, P Q=3, Q B=6, B T=5$, and $A S=7$, find $S T$.

A11. (Symmedians) Let X be the intersection of the tangents to the circumcircle of $\triangle A B C$ at B and C. Prove that $A X$ is isogonal to the A-median with respect to $\angle C A B$.

A12. (Monge's Theorem) Let Γ_{1}, Γ_{2}, and Γ_{3} be three circles in the plane such that none of the circles contains another. For each pair, construct the intersection of their common external tangents. Prove that these three intersections are collinear.
A13. (Exeter point) Let $\triangle A B C$ be a triangle. Let the medians through A, B, and C meet the circumcircle of $\triangle A B C$ at A^{\prime}, B^{\prime}, and C^{\prime} respectively. Let $\triangle D E F$ be the triangle formed by the tangents at A, B, and C to the circumcircle of $\triangle A B C$. Prove that $D A^{\prime}, E B^{\prime}$, and $F C^{\prime}$ are concurrent.

A14. Let $A B C D$ be a cyclic quadrilateral. Prove that

$$
A B \cdot B D \cdot D A+B C \cdot C D \cdot D B=A C \cdot C D \cdot D A+A B \cdot B C \cdot C A
$$

B Problems

B1. (CMO 1994) Let $A B C$ be an acute triangle and let $A D$ be the altitude on $B C$ (D on $B C$). Let H be any point on $A D$. Lines $B H$ and $C H$, when extended, intersect $A C$ and $A B$ at E and F, respectively. Prove that $\angle E D H=\angle F D H$.
B2. Let the incircle (I) of a triangle $A B C$ touch $B C, C A$ and $A B$ at D, E and F respectively. Denote by M, N and P the $A-$ excenter, $B-$ excenter and C - excenter of the triangle $A B C$ respectively. Prove that the circles $(I D M),(I E N)$ and (IFP) are coaxial.

B3. Let $A B C$ be right-angled at A, and let D be a point lying on the side $A C$. Denote by E the reflection of A over line $B D$, and by F the intersection of $C E$ with the perpendicular through D to the line $B C$. Prove that AF, DE, and BC are concurrent.

B4. (ISL 2006) Let $A B C D E$ be a convex pentagon such that

$$
\angle B A C=\angle C A D=\angle D A E \quad \text { and } \quad \angle A B C=\angle A C D=\angle A D E .
$$

The diagonals $B D$ and $C E$ meet at P. Prove that the line $A P$ bisects the side $C D$.
B5. (ISL 2000) Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C, C A$, and $A B$ respectively such that

$$
O D+D H=O E+E H=O F+F H
$$

and the lines $A D, B E$, and $C F$ are concurrent.
B6. (USAMO 2012) Let P be a point in the plane of $\triangle A B C$, and γ a line passing through P. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points where the reflections of lines $P A, P B, P C$ with respect to γ intersect lines $B C, A C, A B$ respectively. Prove that $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

B7. (Newton-Gauss line) Let $A B C D$ be a convex quadrilateral. Let E be the intersection of $A B$ with $C D$ and F be the intersection of $A D$ with $B C$. Prove that the midpoints of $A C$, $B D$, and $E F$ are collinear.

B8. (USATSTST 2017) Let $A B C$ be a triangle with incenter I. Let D be a point on side $B C$ and let ω_{B} and ω_{C} be the incircles of $\triangle A B D$ and $\triangle A C D$, respectively. Suppose that ω_{B} and ω_{C} are tangent to segment $B C$ at points E and F, respectively. Let P be the intersection of segment $A D$ with the line joining the centers of ω_{B} and ω_{C}. Let X be the intersection point of lines $B I$ and $C P$ and let Y be the intersection point of lines $C I$ and $B P$. Prove that lines $E X$ and $F Y$ meet on the incircle of $\triangle A B C$.

B9. (APMO 2016) Let $A B$ and $A C$ be two distinct rays not lying on the same line, and let ω be a circle with center O that is tangent to ray $A C$ at E and ray $A B$ at F. Let R be a point on segment $E F$. The line through O parallel to $E F$ intersects line $A B$ at P. Let N be the intersection of lines $P R$ and $A C$, and let M be the intersection of line $A B$ and the line through R parallel to $A C$. Prove that line $M N$ is tangent to ω.
B10. (USATST 2012) In cyclic quadrilateral $A B C D$, diagonals $A C$ and $B D$ intersect at P. Let E and F be the respective feet of the perpendiculars from P to lines $A B$ and $C D$. Segments $B F$ and $C E$ meet at Q. Prove that lines $P Q$ and $E F$ are perpendicular to each other.

B11. (China 2002) Let E and F be the intersections of opposite sides of a convex quadrilateral $A B C D$. The two diagonals meet at P. Let O be the foot of the perpendicular from P to $E F$. Show that $\angle B O C=\angle A O D$.

C Problems

C1. (USATST 2021) Let A, B, C, D be four points such that no three are collinear and D is not the orthocenter of $A B C$. Let P, Q, R be the orthocenters of $\triangle B C D, \triangle C A D, \triangle A B D$, respectively. Suppose that the lines $A P, B Q, C R$ are pairwise distinct and are concurrent. Show that the four points A, B, C, D lie on a circle.

C2. (USATST 2020) Two circles Γ_{1} and Γ_{2} have common external tangents ℓ_{1} and ℓ_{2} meeting at T. Suppose ℓ_{1} touches Γ_{1} at A and ℓ_{2} touches Γ_{2} at B. A circle Ω through A and B intersects Γ_{1} again at C and Γ_{2} again at D, such that quadrilateral $A B C D$ is convex.

Suppose lines $A C$ and $B D$ meet at point X, while lines $A D$ and $B C$ meet at point Y. Show that T, X, Y are collinear.
C3. (ISL 2011) Let $A B C$ be a triangle with $A B=A C$ and let D be the midpoint of $A C$. The angle bisector of $\angle B A C$ intersects the circle through D, B and C at the point E inside the triangle $A B C$. The line $B D$ intersects the circle through A, E and B in two points B and F. The lines $A F$ and $B E$ meet at a point I, and the lines $C I$ and $B D$ meet at a point K. Show that I is the incentre of triangle $K A B$.

C4. (USAMO 2017) In convex cyclic quadrilateral $A B C D$, we know that lines $A C$ and $B D$ intersect at E, lines $A B$ and $C D$ intersect at F, and lines $B C$ and $D A$ intersect at G. Suppose that the circumcircle of $\triangle A B E$ intersects line $C B$ at B and P, and the circumcircle of $\triangle A D E$ intersects line $C D$ at D and Q, where C, B, P, G and C, Q, D, F are collinear in that order. Prove that if lines $F P$ and $G Q$ intersect at M, then $\angle M A C=90^{\circ}$.
C5. (China 2015) Let A, B, D, E, F, C be six points lie on a circle (in order) such that $A B=A C$. Let $P=A D \cap B E, R=A F \cap C E, Q=B F \cap C D, S=A D \cap B F, T=A F \cap C D$. Let K be a point lie on $S T$ satisfy $\angle Q K S=\angle E C A$. Prove that $\frac{S K}{K T}=\frac{P Q}{Q R}$.
C6. (USAMO 2016) Let $\triangle A B C$ be an acute triangle, and let I_{B}, I_{C}, and O denote its B-excenter, C-excenter, and circumcenter, respectively. Points E and Y are selected on $\overline{A C}$ such that $\angle A B Y=$ $\angle C B Y$ and $\overline{B E} \perp \overline{A C}$. Similarly, points F and Z are selected on $\overline{A B}$ such that $\angle A C Z=\angle B C Z$ and $\overline{C F} \perp \overline{A B}$.
Lines $\overleftarrow{I_{B} F}$ and $\overleftarrow{I_{C} E}$ meet at P. Prove that $\overline{P O}$ and $\overline{Y Z}$ are perpendicular.
C7. (USATST 2015) Let $A B C$ be a non-equilateral triangle and let M_{a}, M_{b}, M_{c} be the midpoints of the sides $B C, C A, A B$, respectively. Let S be a point lying on the Euler line. Denote by X, Y, Z the second intersections of $M_{a} S, M_{b} S, M_{c} S$ with the nine-point circle. Prove that $A X, B Y$, $C Z$ are concurrent.

