Tangent Circles

Victor Rong

August 8, 2020
Problems concerning tangent circles are challenging, but - perhaps due to this difficulty - the solutions often end up similar to each other. There are three synthetic approaches which are very effective:

- Inversion

Inversion is always worth trying. In the case of tangent circles, one common trick is to invert one of the circles into a line while fixing the other and doing an overlay.

- Locating the point of tangency

Often, the point of tangency can be described in a different way. I've found that 80% of the time, it's the Miquel point of some triangle or complete quad in the diagram. If you manage to identify the point, then you can just follow this easy procedure:

1. Redefine point T as whatever you think it might be.
2. Show that it's on each circle (probably just angle-chasing).
3. Hopefully you can angle-chase the rest.

- Forming a homothety

Tangent circles are homothetic with their point of tangency as the center. A solution path is to find/construct triangles on each of the circles which are homothetic.
Of course, there are other approaches, a few of which are:

- Bashing

Have fun.

- Casey's Theorem

See here for the statement. In particular, say you have three points X, Y, Z and a circle Γ. Let t_{X} be the length of the tangent from X to Γ and define t_{Y} and t_{Z} similarly. If you prove that

$$
t_{X} \cdot Y Z+t_{Y} \cdot Z X=t_{Z} \cdot X Y
$$

or something cyclic to that (same order as Ptolemy's), then the converse of Casey's implies that Γ is tangent to the circumcircle of $\triangle X Y Z$.

- Curvilinear incircles

Knowing certain configurations (Sawayama's Theorem, mixtilinear incircles, etc.) is helpful and can even trivialize some problems. See Yufei Zhao's notes: 1 and 2 .

A Problems

A1. (INMO 2019) Let $A B$ be the diameter of a circle Γ and let C be a point on Γ different from A and B. Let D be the foot of perpendicular from C on to $A B$. Let K be a point on the segment $C D$ such that $A C$ is equal to the semi perimeter of $A D K$. Show that the excircle of $A D K$ opposite A is tangent to Γ.
A2. Let $A B C$ be a triangle and let B^{\prime} and C^{\prime} be points on $A B$ and $A C$ such that $B^{\prime} C^{\prime} \| B C$. Show that there exists a circle passing through B^{\prime} and C^{\prime} that is tangent to the incircle and A-excircle of $A B C$.

A3. (RMM 2018). Let $A B C D$ be a cyclic quadrilateral and let P be a point on the side $A B$. The diagonal $A C$ meets $D P$ at Q. The line through P parallel to $C D$ meets the extension of the side $C B$ beyond B at K. The line through Q parallel to $B D$ meets the extension of the side $C B$ beyond B at L. Prove that the circumcircles of $\triangle B K P$ and $\triangle C L Q$ are tangent.
A4. (Iran 2013). Let $A B C D E$ be a pentagon inscribe in a circle (O). Let $B E \cap A D=T$. Suppose the parallel line with $C D$ which passes through T which cut $A B, C E$ at X, Y. If ω be the circumcircle of triangle $A X Y$ then prove that ω is tangent to (O).
A5. Let $A B C D$ be a rectangle. Suppose that Γ is a circle which passes through A and C (but not all four points). Two circles ω_{1} and ω_{2} lie within $A B C D$ such that ω_{1} is tangent to $B A, B C$, and Γ, and ω_{2} is tangent to $D A, D C$, and Γ. Prove that the sum of the radii of ω_{1} and ω_{2} is independent of the choice of Γ.
A6. (APMO 2006). Let A, B be two distinct points on a given circle O and let P be the midpoint of the line segment $A B$. Let O_{1} be the circle tangent to the line $A B$ at P and tangent to the circle O. Let ℓ be the tangent line, different from the line $A B$, to O_{1} passing through A. Let C be the intersection point, different from A, of ℓ and O. Let Q be the midpoint of the line segment $B C$ and O_{2} be the circle tangent to the line $B C$ at Q and tangent to the line segment $A C$. Prove that the circle O_{2} is tangent to the circle O.

A7. (ISL 2018). Let O and Ω be the circumcenter and circumcircle respectively of acute triangle $A B C$. Let P be an arbitrary point on Ω, distinct from A, B, C, and their antipodes in Ω. Denote the circumcenters of the triangles $A O P, B O P$, and $C O P$ as O_{A}, O_{B}, and O_{C}, respectively. The lines $\ell_{A}, \ell_{B}, \ell_{C}$ perpendicular to $B C, C A$, and $A B$ pass through O_{A}, O_{B}, and O_{C}, respectively. Prove that the circumcircle of triangle formed by ℓ_{A}, ℓ_{B}, and ℓ_{C} is tangent to the line $O P$.

B Problems

B1. (ISL 2017). In $\triangle A B C$, let ω be the excircle opposite to A. Let D, E, and F be the points where ω is tangent to $B C, C A$, and $A B$, respectively. The circle $A E F$ intersects line $B C$ at P and Q. Let M be the midpoint of $A D$. Prove that the circumcircle of $\triangle M P Q$ is tangent to ω.

B2. (CMO 2015). Let $\triangle A B C$ be an acute triangle with circumcenter O. Let I be a circle with center on the altitude from A in $A B C$, passing through vertex A and points P and Q on sides $A B$ and $A C$. Assume that $B P \cdot C Q=A P \cdot A Q$. Prove that I is tangent to the circumcircle of $\triangle B O C$.

B3. (RMM 2016). A hexagon convex $A_{1} B_{1} A_{2} B_{2} A_{3} B_{3}$ it is inscribed in a circumference Ω with radius R. The diagonals $A_{1} B_{2}, A_{2} B_{3}, A_{3} B_{1}$ are concurrent in X. For each $i=1,2,3$ let ω_{i} tangent to the segments $X A_{i}$ and $X B_{i}$ and tangent to the arc $A_{i} B_{i}$ of Ω that does not contain the other vertices of the hexagon; let r_{i} the radius of ω_{i}.
a) Prove that $R \geq r_{1}+r_{2}+r_{3}$.
b) If $R=r_{1}+r_{2}+r_{3}$, prove that the six points of tangency of the circumferences ω_{i} with the diagonals $A_{1} B_{2}, A_{2} B_{3}, A_{3} B_{1}$ are concyclic.
B4. (Iran 2017). In triangle $A B C$, points P and Q lie on side $B C$ such that $B P=C Q$ and P lies between B and Q. The circumcircle of $\triangle A P Q$ intersects sides $A B$ and $A C$ at E and F, respectively. The point T is the intersection of $E P$ and $F Q$. Two lines passing through the midpoint of $B C$ and parallel to $A B$ and $A C$ intersect $E P$ and $F Q$ at points X and Y, respectively. Prove that the circumcircles of $\triangle T X Y$ and $\triangle A P Q$ are tangent to each other.

B5. (ISL 2002). The incircle Ω of the acute-angled triangle $A B C$ is tangent to its side $B C$ at a point K. Let $A D$ be an altitude of triangle $A B C$, and let M be the midpoint of the segment $A D$. If N is the common point of the circle Ω and the line $K M$ (distinct from K), then prove that the incircle Ω and the circumcircle of triangle $B C N$ are tangent to each other at the point N.
B6. (ISL 2018). Let $A B C$ be a triangle with circumcircle Ω and incentre I. A line ℓ intersects the lines $A I, B I$, and $C I$ at points D, E, and F, respectively, distinct from the points A, B, C, and I. The perpendicular bisectors x, y, and z of the segments $A D, B E$, and $C F$, respectively determine a triangle Θ. Show that the circumcircle of the triangle Θ is tangent to Ω.

B7. (Taiwan 2019). Given $\triangle A B C$, denote its incenter and orthocenter by I and H, respectively. Assume there is a point K with

$$
A H+A K=B H+B K=C H+C K
$$

Show that K lies on line $H I$.

C Problems

C1. (APMO 2014). Circles ω and Ω meet at points A and B. Let M be the midpoint of the arc $A B$ of circle ω (M lies inside Ω). A chord $M P$ of circle ω intersects Ω at Q (Q lies inside ω). Let ℓ_{P} be the tangent line to ω at P, and let ℓ_{Q} be the tangent line to Ω at Q. Prove that the circumcircle of the triangle formed by the lines ℓ_{P}, ℓ_{Q}, and $A B$ is tangent to Ω.
C2. (ELMO 2016). Elmo is now learning olympiad geometry. In $\triangle A B C$ with $A B \neq A C$, let its incircle be tangent to sides $B C, C A$, and $A B$ at D, E, and F, respectively. The internal angle bisector of $\angle B A C$ intersects lines $D E$ and $D F$ at X and Y, respectively. Let S and T be distinct points on side $B C$ such that $\angle X S Y=\angle X T Y=90^{\circ}$. Finally, let γ be the circumcircle of $\triangle A S T$.
a) Help Elmo show that γ is tangent to the circumcircle of $\triangle A B C$.
b) Help Elmo show that γ is tangent to the incircle of $\triangle A B C$.

C3. (RMM 2013). Let $A B C D$ be a quadrilateral inscribed in a circle ω. The lines $A B$ and $C D$ meet at P, the lines $A D$ and $B C$ meet at Q, and the diagonals $A C$ and $B D$ meet at R. Let M be the midpoint of the segment $P Q$ and let K be the common point of the segment $M R$ and the circle ω. Prove that the circumcircle of $\triangle K P Q$ and ω are tangent.
C4. (Iran 2012). Suppose $A B C D$ is a parallelogram. Consider circles ω_{1} and ω_{2} such that ω_{1} is tangent to segments $A B$ and $A D$ and ω_{2} is tangent to segments $B C$ and $C D$. Suppose that there exists a circle which is tangent to lines $A D$ and $D C$ and externally tangent to ω_{1} and ω_{2}. Prove that there exists a circle which is tangent to lines $A B$ and $B C$ and also externally tangent to circles ω_{1} and ω_{2}.

C5. (IMO 2011). Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b}, and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C, C A$, and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b}, and ℓ_{c} is tangent to the circle Γ.
C6. (RMM 2018). Fix a circle Γ, a line ℓ to tangent Γ, and another circle Ω disjoint from ℓ such that Γ and Ω lie on opposite sides of ℓ. The tangents to Γ from a variable point X on Ω meet ℓ at Y and Z. Prove that, as X varies over Ω, the circumcircle of $X Y Z$ is tangent to two fixed circles.

