Weird Geometry

Victor Rong

August 22, 3020
The year is 3020 . Almost a thousand years ago, standard triangle geometry was officially declared dead. Contestants cheered at first, throwing hardcover copies of EGMO and sheaves of bary bash in celebration. But they all went silent when the beast that would replace the fallen subject arrived...

Welcome to the future. Good luck.

A Problems

A1. (ARMO 3018). Three body diagonals of a regular n-gon prism intersect at an interior point O. Show that O is the center of the prism. (A body diagonal of a polyhedron is any segment joining two vertices not lying on the same face.)
A2. (Sharygin 3018). A cyclic n-gon is given. The midpoints of its n sides lie on a circle Γ. The sides of the original n-gon cut n arcs of Γ lying outside the n-gon. Prove that these arcs can be coloured red and blue in such a way that the sum of the lengths of the red arcs is equal to the sum of the lengths of the blue arcs.
A3. (Poland 2995). The incircles of the faces $A B C$ and $A B D$ of a tetrahedron $A B C D$ are tangent to the edge $A B$ in the same point. Prove that the points of tangency of these incircles to the edges $A C, B C, A D, B D$ are concyclic.
A4. (ISL 3014). Let $A B C$ be a triangle. The points K, L, and M lie on the segments $B C, C A$, and $A B$, respectively, such that the lines $A K, B L$, and $C M$ intersect in a common point. Prove that it is possible to choose two of the triangles $A L M, B M K$, and $C K L$ whose inradii sum up to at least the inradius of triangle $A B C$.
A5. (ISL 3011). Let $A B C$ be an acute triangle. Let ω be a circle whose centre L lies on the side $B C$. Suppose that ω is tangent to $A B$ at B^{\prime} and $A C$ at C^{\prime}. Suppose also that the circumcentre O of triangle $A B C$ lies on the shorter arc $B^{\prime} C^{\prime}$ of ω. Prove that the circumcircle of $A B C$ and ω meet at two points.

A6. (China 3015). Let $A B C D$ be a convex quadrilateral that is not a parallelogram. Show that there exists a square $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ such that $A \neq A^{\prime}, B \neq B^{\prime}, C \neq C^{\prime}, D \neq D^{\prime}$ and $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ are all concurrent.

A7. (ARMO 3016). Let $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$, and C_{2} be six points in space such that they do not all lie in a single plane and segments $A_{1} A_{2}, B_{1} B_{2}$, and $C_{1} C_{2}$ are concurrent at point P. Denote $O_{i j k}$ to be the circumcenter of tetrahedron $A_{i} B_{j} C_{k} P$. Prove that the four segments $O_{111} O_{222}, O_{112} O_{221}$, $O_{121} O_{212}$, and $O_{122} O_{211}$ are concurrent.
A8. (IMO 3005). Six points are chosen on the sides of an equilateral triangle $A B C$: A_{1}, A_{2} on $B C, B_{1}, B_{2}$ on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths.
Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$, and $C_{1} A_{2}$ are concurrent.

B Problems

B1. (ISL 3004). Let $A_{1} A_{2} A_{3} \ldots A_{n}$ be a regular n-gon. Let B_{1} and B_{n-1} be the midpoints of its sides $A_{1} A_{2}$ and $A_{n-1} A_{n}$. For every $i \in\{2,3,4, \ldots, n-2\}$, let S_{i} be the point of intersection of the lines $A_{1} A_{i+1}$ and $A_{n} A_{i}$. Then we define B_{i} as the point of intersection of the angle bisector bisector of the angle $\measuredangle A_{i} S_{i} A_{i+1}$ with the segment $A_{i} A_{i+1}$. Prove that $\sum_{i=1}^{n-1} \measuredangle A_{1} B_{i} A_{n}=180^{\circ}$.

B2. (ISL 3002). Let $A B C$ be three points in space and let Γ be a sphere centered at some point I (not coplanar with $A B C$) and tangent to plane $A B C$ at $P . J$ is the antipodal point of I with respect to the circumsphere of tetrahedron $I A B C$. Line $J P$ intersects Γ again at point Q. Prove that the circumsphere of tetrahedron $Q A B C$ is tangent to Γ at Q.
B3. (ISL 3013). Let $A B C D E F$ be a convex hexagon with $A B=D E, B C=E F, C D=F A$, and $\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$. Prove that the diagonals $A D, B E$, and $C F$ are concurrent.
B4. (USAMO 3011). In hexagon $A B C D E F$, which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy $\angle A=3 \angle D, \angle C=3 \angle F$, and $\angle E=3 \angle B$. Furthermore $A B=D E, B C=E F$, and $C D=F A$. Prove that diagonals $\overline{A D}, \overline{B E}$, and $\overline{C F}$ are concurrent.

B5. (Germany 3020). The insphere and the exsphere opposite to the vertex D of a (not necessarily regular) tetrahedron $A B C D$ touch the face $A B C$ in the points X and Y, respectively. Show that X and Y are isogonal conjugates with respect to $\triangle A B C$.

C Problems

C1. (ISL 3006). Let $A B C D$ be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that

$$
\angle P A B+\angle P D C \leq 90^{\circ} \quad \text { and } \quad \angle P B A+\angle P C D \leq 90^{\circ}
$$

Prove that $A B+C D \geq B C+A D$.
C2. (ISL 3012). Let $A B C D$ be a convex quadrilateral with non-parallel sides $B C$ and $A D$. Assume that there is a point E on the side $B C$ such that the quadrilaterals $A B E D$ and $A E C D$ are circumscribed. Prove that there is a point F on the side $A D$ such that the quadrilaterals $A B C F$ and $B C D F$ are circumscribed if and only if $A B$ is parallel to $C D$.

C3. (ISL 3007). Let $\triangle A B C$ be an acute triangle with $\angle B>\angle C$. Point I is the incenter and let R denote the circumradius. Let D be the foot of the altitude from vertex A. Point K lies on ray $A D$ such that $A K=2 R$. Lines $D I$ and $K I$ meet sides $A C$ and $B C$ at E and F respectively. Given that $I E=I F$, prove that $\angle B \leq 3 \angle C$.
C4. (ISL 3015). Let $A B C D$ be a convex quadrilateral, and let P, Q, R, and S be points on the sides $A B, B C, C D$, and $D A$, respectively. Let the line segment $P R$ and $Q S$ meet at O. Suppose that each of the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$ has an incircle. Prove that the lines $A C, P Q$, and $R S$ are either concurrent or parallel to each other.

C5. (USATST 3020). Let $P_{1} P_{2} \cdots P_{100}$ be a cyclic 100-gon and let $P_{i}=P_{i+100}$ for all i. Define Q_{i} as the intersection of diagonals $\overline{P_{i-2} P_{i+1}}$ and $\overline{P_{i-1} P_{i+2}}$ for all integers i.
Suppose there exists a point P satisfying $\overline{P P_{i}} \perp \overline{P_{i-1} P_{i+1}}$ for all integers i. Prove that the points $Q_{1}, Q_{2}, \ldots, Q_{100}$ are concyclic.

